diff options
Diffstat (limited to 'r_chainner')
| -rw-r--r-- | r_chainner/archs/face/gfpganv1_clean_arch.py | 370 | ||||
| -rw-r--r-- | r_chainner/archs/face/stylegan2_clean_arch.py | 453 | ||||
| -rw-r--r-- | r_chainner/model_loading.py | 28 | ||||
| -rw-r--r-- | r_chainner/types.py | 18 | 
4 files changed, 869 insertions, 0 deletions
| diff --git a/r_chainner/archs/face/gfpganv1_clean_arch.py b/r_chainner/archs/face/gfpganv1_clean_arch.py new file mode 100644 index 0000000..f3c4d49 --- /dev/null +++ b/r_chainner/archs/face/gfpganv1_clean_arch.py @@ -0,0 +1,370 @@ +# pylint: skip-file
 +# type: ignore
 +import math
 +import random
 +
 +import torch
 +from torch import nn
 +from torch.nn import functional as F
 +
 +from r_chainner.archs.face.stylegan2_clean_arch import StyleGAN2GeneratorClean
 +
 +
 +class StyleGAN2GeneratorCSFT(StyleGAN2GeneratorClean):
 +    """StyleGAN2 Generator with SFT modulation (Spatial Feature Transform).
 +    It is the clean version without custom compiled CUDA extensions used in StyleGAN2.
 +    Args:
 +        out_size (int): The spatial size of outputs.
 +        num_style_feat (int): Channel number of style features. Default: 512.
 +        num_mlp (int): Layer number of MLP style layers. Default: 8.
 +        channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
 +        narrow (float): The narrow ratio for channels. Default: 1.
 +        sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
 +    """
 +
 +    def __init__(
 +        self,
 +        out_size,
 +        num_style_feat=512,
 +        num_mlp=8,
 +        channel_multiplier=2,
 +        narrow=1,
 +        sft_half=False,
 +    ):
 +        super(StyleGAN2GeneratorCSFT, self).__init__(
 +            out_size,
 +            num_style_feat=num_style_feat,
 +            num_mlp=num_mlp,
 +            channel_multiplier=channel_multiplier,
 +            narrow=narrow,
 +        )
 +        self.sft_half = sft_half
 +
 +    def forward(
 +        self,
 +        styles,
 +        conditions,
 +        input_is_latent=False,
 +        noise=None,
 +        randomize_noise=True,
 +        truncation=1,
 +        truncation_latent=None,
 +        inject_index=None,
 +        return_latents=False,
 +    ):
 +        """Forward function for StyleGAN2GeneratorCSFT.
 +        Args:
 +            styles (list[Tensor]): Sample codes of styles.
 +            conditions (list[Tensor]): SFT conditions to generators.
 +            input_is_latent (bool): Whether input is latent style. Default: False.
 +            noise (Tensor | None): Input noise or None. Default: None.
 +            randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
 +            truncation (float): The truncation ratio. Default: 1.
 +            truncation_latent (Tensor | None): The truncation latent tensor. Default: None.
 +            inject_index (int | None): The injection index for mixing noise. Default: None.
 +            return_latents (bool): Whether to return style latents. Default: False.
 +        """
 +        # style codes -> latents with Style MLP layer
 +        if not input_is_latent:
 +            styles = [self.style_mlp(s) for s in styles]
 +        # noises
 +        if noise is None:
 +            if randomize_noise:
 +                noise = [None] * self.num_layers  # for each style conv layer
 +            else:  # use the stored noise
 +                noise = [
 +                    getattr(self.noises, f"noise{i}") for i in range(self.num_layers)
 +                ]
 +        # style truncation
 +        if truncation < 1:
 +            style_truncation = []
 +            for style in styles:
 +                style_truncation.append(
 +                    truncation_latent + truncation * (style - truncation_latent)
 +                )
 +            styles = style_truncation
 +        # get style latents with injection
 +        if len(styles) == 1:
 +            inject_index = self.num_latent
 +
 +            if styles[0].ndim < 3:
 +                # repeat latent code for all the layers
 +                latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
 +            else:  # used for encoder with different latent code for each layer
 +                latent = styles[0]
 +        elif len(styles) == 2:  # mixing noises
 +            if inject_index is None:
 +                inject_index = random.randint(1, self.num_latent - 1)
 +            latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
 +            latent2 = (
 +                styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
 +            )
 +            latent = torch.cat([latent1, latent2], 1)
 +
 +        # main generation
 +        out = self.constant_input(latent.shape[0])
 +        out = self.style_conv1(out, latent[:, 0], noise=noise[0])
 +        skip = self.to_rgb1(out, latent[:, 1])
 +
 +        i = 1
 +        for conv1, conv2, noise1, noise2, to_rgb in zip(
 +            self.style_convs[::2],
 +            self.style_convs[1::2],
 +            noise[1::2],
 +            noise[2::2],
 +            self.to_rgbs,
 +        ):
 +            out = conv1(out, latent[:, i], noise=noise1)
 +
 +            # the conditions may have fewer levels
 +            if i < len(conditions):
 +                # SFT part to combine the conditions
 +                if self.sft_half:  # only apply SFT to half of the channels
 +                    out_same, out_sft = torch.split(out, int(out.size(1) // 2), dim=1)
 +                    out_sft = out_sft * conditions[i - 1] + conditions[i]
 +                    out = torch.cat([out_same, out_sft], dim=1)
 +                else:  # apply SFT to all the channels
 +                    out = out * conditions[i - 1] + conditions[i]
 +
 +            out = conv2(out, latent[:, i + 1], noise=noise2)
 +            skip = to_rgb(out, latent[:, i + 2], skip)  # feature back to the rgb space
 +            i += 2
 +
 +        image = skip
 +
 +        if return_latents:
 +            return image, latent
 +        else:
 +            return image, None
 +
 +
 +class ResBlock(nn.Module):
 +    """Residual block with bilinear upsampling/downsampling.
 +    Args:
 +        in_channels (int): Channel number of the input.
 +        out_channels (int): Channel number of the output.
 +        mode (str): Upsampling/downsampling mode. Options: down | up. Default: down.
 +    """
 +
 +    def __init__(self, in_channels, out_channels, mode="down"):
 +        super(ResBlock, self).__init__()
 +
 +        self.conv1 = nn.Conv2d(in_channels, in_channels, 3, 1, 1)
 +        self.conv2 = nn.Conv2d(in_channels, out_channels, 3, 1, 1)
 +        self.skip = nn.Conv2d(in_channels, out_channels, 1, bias=False)
 +        if mode == "down":
 +            self.scale_factor = 0.5
 +        elif mode == "up":
 +            self.scale_factor = 2
 +
 +    def forward(self, x):
 +        out = F.leaky_relu_(self.conv1(x), negative_slope=0.2)
 +        # upsample/downsample
 +        out = F.interpolate(
 +            out, scale_factor=self.scale_factor, mode="bilinear", align_corners=False
 +        )
 +        out = F.leaky_relu_(self.conv2(out), negative_slope=0.2)
 +        # skip
 +        x = F.interpolate(
 +            x, scale_factor=self.scale_factor, mode="bilinear", align_corners=False
 +        )
 +        skip = self.skip(x)
 +        out = out + skip
 +        return out
 +
 +
 +class GFPGANv1Clean(nn.Module):
 +    """The GFPGAN architecture: Unet + StyleGAN2 decoder with SFT.
 +    It is the clean version without custom compiled CUDA extensions used in StyleGAN2.
 +    Ref: GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior.
 +    Args:
 +        out_size (int): The spatial size of outputs.
 +        num_style_feat (int): Channel number of style features. Default: 512.
 +        channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
 +        decoder_load_path (str): The path to the pre-trained decoder model (usually, the StyleGAN2). Default: None.
 +        fix_decoder (bool): Whether to fix the decoder. Default: True.
 +        num_mlp (int): Layer number of MLP style layers. Default: 8.
 +        input_is_latent (bool): Whether input is latent style. Default: False.
 +        different_w (bool): Whether to use different latent w for different layers. Default: False.
 +        narrow (float): The narrow ratio for channels. Default: 1.
 +        sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
 +    """
 +
 +    def __init__(
 +        self,
 +        state_dict,
 +    ):
 +        super(GFPGANv1Clean, self).__init__()
 +
 +        out_size = 512
 +        num_style_feat = 512
 +        channel_multiplier = 2
 +        decoder_load_path = None
 +        fix_decoder = False
 +        num_mlp = 8
 +        input_is_latent = True
 +        different_w = True
 +        narrow = 1
 +        sft_half = True
 +
 +        self.model_arch = "GFPGAN"
 +        self.sub_type = "Face SR"
 +        self.scale = 8
 +        self.in_nc = 3
 +        self.out_nc = 3
 +        self.state = state_dict
 +
 +        self.supports_fp16 = False
 +        self.supports_bf16 = True
 +        self.min_size_restriction = 512
 +
 +        self.input_is_latent = input_is_latent
 +        self.different_w = different_w
 +        self.num_style_feat = num_style_feat
 +
 +        unet_narrow = narrow * 0.5  # by default, use a half of input channels
 +        channels = {
 +            "4": int(512 * unet_narrow),
 +            "8": int(512 * unet_narrow),
 +            "16": int(512 * unet_narrow),
 +            "32": int(512 * unet_narrow),
 +            "64": int(256 * channel_multiplier * unet_narrow),
 +            "128": int(128 * channel_multiplier * unet_narrow),
 +            "256": int(64 * channel_multiplier * unet_narrow),
 +            "512": int(32 * channel_multiplier * unet_narrow),
 +            "1024": int(16 * channel_multiplier * unet_narrow),
 +        }
 +
 +        self.log_size = int(math.log(out_size, 2))
 +        first_out_size = 2 ** (int(math.log(out_size, 2)))
 +
 +        self.conv_body_first = nn.Conv2d(3, channels[f"{first_out_size}"], 1)
 +
 +        # downsample
 +        in_channels = channels[f"{first_out_size}"]
 +        self.conv_body_down = nn.ModuleList()
 +        for i in range(self.log_size, 2, -1):
 +            out_channels = channels[f"{2**(i - 1)}"]
 +            self.conv_body_down.append(ResBlock(in_channels, out_channels, mode="down"))
 +            in_channels = out_channels
 +
 +        self.final_conv = nn.Conv2d(in_channels, channels["4"], 3, 1, 1)
 +
 +        # upsample
 +        in_channels = channels["4"]
 +        self.conv_body_up = nn.ModuleList()
 +        for i in range(3, self.log_size + 1):
 +            out_channels = channels[f"{2**i}"]
 +            self.conv_body_up.append(ResBlock(in_channels, out_channels, mode="up"))
 +            in_channels = out_channels
 +
 +        # to RGB
 +        self.toRGB = nn.ModuleList()
 +        for i in range(3, self.log_size + 1):
 +            self.toRGB.append(nn.Conv2d(channels[f"{2**i}"], 3, 1))
 +
 +        if different_w:
 +            linear_out_channel = (int(math.log(out_size, 2)) * 2 - 2) * num_style_feat
 +        else:
 +            linear_out_channel = num_style_feat
 +
 +        self.final_linear = nn.Linear(channels["4"] * 4 * 4, linear_out_channel)
 +
 +        # the decoder: stylegan2 generator with SFT modulations
 +        self.stylegan_decoder = StyleGAN2GeneratorCSFT(
 +            out_size=out_size,
 +            num_style_feat=num_style_feat,
 +            num_mlp=num_mlp,
 +            channel_multiplier=channel_multiplier,
 +            narrow=narrow,
 +            sft_half=sft_half,
 +        )
 +
 +        # load pre-trained stylegan2 model if necessary
 +        if decoder_load_path:
 +            self.stylegan_decoder.load_state_dict(
 +                torch.load(
 +                    decoder_load_path, map_location=lambda storage, loc: storage
 +                )["params_ema"]
 +            )
 +        # fix decoder without updating params
 +        if fix_decoder:
 +            for _, param in self.stylegan_decoder.named_parameters():
 +                param.requires_grad = False
 +
 +        # for SFT modulations (scale and shift)
 +        self.condition_scale = nn.ModuleList()
 +        self.condition_shift = nn.ModuleList()
 +        for i in range(3, self.log_size + 1):
 +            out_channels = channels[f"{2**i}"]
 +            if sft_half:
 +                sft_out_channels = out_channels
 +            else:
 +                sft_out_channels = out_channels * 2
 +            self.condition_scale.append(
 +                nn.Sequential(
 +                    nn.Conv2d(out_channels, out_channels, 3, 1, 1),
 +                    nn.LeakyReLU(0.2, True),
 +                    nn.Conv2d(out_channels, sft_out_channels, 3, 1, 1),
 +                )
 +            )
 +            self.condition_shift.append(
 +                nn.Sequential(
 +                    nn.Conv2d(out_channels, out_channels, 3, 1, 1),
 +                    nn.LeakyReLU(0.2, True),
 +                    nn.Conv2d(out_channels, sft_out_channels, 3, 1, 1),
 +                )
 +            )
 +        self.load_state_dict(state_dict)
 +
 +    def forward(
 +        self, x, return_latents=False, return_rgb=True, randomize_noise=True, **kwargs
 +    ):
 +        """Forward function for GFPGANv1Clean.
 +        Args:
 +            x (Tensor): Input images.
 +            return_latents (bool): Whether to return style latents. Default: False.
 +            return_rgb (bool): Whether return intermediate rgb images. Default: True.
 +            randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
 +        """
 +        conditions = []
 +        unet_skips = []
 +        out_rgbs = []
 +
 +        # encoder
 +        feat = F.leaky_relu_(self.conv_body_first(x), negative_slope=0.2)
 +        for i in range(self.log_size - 2):
 +            feat = self.conv_body_down[i](feat)
 +            unet_skips.insert(0, feat)
 +        feat = F.leaky_relu_(self.final_conv(feat), negative_slope=0.2)
 +
 +        # style code
 +        style_code = self.final_linear(feat.view(feat.size(0), -1))
 +        if self.different_w:
 +            style_code = style_code.view(style_code.size(0), -1, self.num_style_feat)
 +
 +        # decode
 +        for i in range(self.log_size - 2):
 +            # add unet skip
 +            feat = feat + unet_skips[i]
 +            # ResUpLayer
 +            feat = self.conv_body_up[i](feat)
 +            # generate scale and shift for SFT layers
 +            scale = self.condition_scale[i](feat)
 +            conditions.append(scale.clone())
 +            shift = self.condition_shift[i](feat)
 +            conditions.append(shift.clone())
 +            # generate rgb images
 +            if return_rgb:
 +                out_rgbs.append(self.toRGB[i](feat))
 +
 +        # decoder
 +        image, _ = self.stylegan_decoder(
 +            [style_code],
 +            conditions,
 +            return_latents=return_latents,
 +            input_is_latent=self.input_is_latent,
 +            randomize_noise=randomize_noise,
 +        )
 +
 +        return image, out_rgbs
 diff --git a/r_chainner/archs/face/stylegan2_clean_arch.py b/r_chainner/archs/face/stylegan2_clean_arch.py new file mode 100644 index 0000000..a68655a --- /dev/null +++ b/r_chainner/archs/face/stylegan2_clean_arch.py @@ -0,0 +1,453 @@ +# pylint: skip-file
 +# type: ignore
 +import math
 +
 +import torch
 +from torch import nn
 +from torch.nn import functional as F
 +from torch.nn import init
 +from torch.nn.modules.batchnorm import _BatchNorm
 +
 +
 +@torch.no_grad()
 +def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs):
 +    """Initialize network weights.
 +    Args:
 +        module_list (list[nn.Module] | nn.Module): Modules to be initialized.
 +        scale (float): Scale initialized weights, especially for residual
 +            blocks. Default: 1.
 +        bias_fill (float): The value to fill bias. Default: 0
 +        kwargs (dict): Other arguments for initialization function.
 +    """
 +    if not isinstance(module_list, list):
 +        module_list = [module_list]
 +    for module in module_list:
 +        for m in module.modules():
 +            if isinstance(m, nn.Conv2d):
 +                init.kaiming_normal_(m.weight, **kwargs)
 +                m.weight.data *= scale
 +                if m.bias is not None:
 +                    m.bias.data.fill_(bias_fill)
 +            elif isinstance(m, nn.Linear):
 +                init.kaiming_normal_(m.weight, **kwargs)
 +                m.weight.data *= scale
 +                if m.bias is not None:
 +                    m.bias.data.fill_(bias_fill)
 +            elif isinstance(m, _BatchNorm):
 +                init.constant_(m.weight, 1)
 +                if m.bias is not None:
 +                    m.bias.data.fill_(bias_fill)
 +
 +
 +class NormStyleCode(nn.Module):
 +    def forward(self, x):
 +        """Normalize the style codes.
 +        Args:
 +            x (Tensor): Style codes with shape (b, c).
 +        Returns:
 +            Tensor: Normalized tensor.
 +        """
 +        return x * torch.rsqrt(torch.mean(x**2, dim=1, keepdim=True) + 1e-8)
 +
 +
 +class ModulatedConv2d(nn.Module):
 +    """Modulated Conv2d used in StyleGAN2.
 +    There is no bias in ModulatedConv2d.
 +    Args:
 +        in_channels (int): Channel number of the input.
 +        out_channels (int): Channel number of the output.
 +        kernel_size (int): Size of the convolving kernel.
 +        num_style_feat (int): Channel number of style features.
 +        demodulate (bool): Whether to demodulate in the conv layer. Default: True.
 +        sample_mode (str | None): Indicating 'upsample', 'downsample' or None. Default: None.
 +        eps (float): A value added to the denominator for numerical stability. Default: 1e-8.
 +    """
 +
 +    def __init__(
 +        self,
 +        in_channels,
 +        out_channels,
 +        kernel_size,
 +        num_style_feat,
 +        demodulate=True,
 +        sample_mode=None,
 +        eps=1e-8,
 +    ):
 +        super(ModulatedConv2d, self).__init__()
 +        self.in_channels = in_channels
 +        self.out_channels = out_channels
 +        self.kernel_size = kernel_size
 +        self.demodulate = demodulate
 +        self.sample_mode = sample_mode
 +        self.eps = eps
 +
 +        # modulation inside each modulated conv
 +        self.modulation = nn.Linear(num_style_feat, in_channels, bias=True)
 +        # initialization
 +        default_init_weights(
 +            self.modulation,
 +            scale=1,
 +            bias_fill=1,
 +            a=0,
 +            mode="fan_in",
 +            nonlinearity="linear",
 +        )
 +
 +        self.weight = nn.Parameter(
 +            torch.randn(1, out_channels, in_channels, kernel_size, kernel_size)
 +            / math.sqrt(in_channels * kernel_size**2)
 +        )
 +        self.padding = kernel_size // 2
 +
 +    def forward(self, x, style):
 +        """Forward function.
 +        Args:
 +            x (Tensor): Tensor with shape (b, c, h, w).
 +            style (Tensor): Tensor with shape (b, num_style_feat).
 +        Returns:
 +            Tensor: Modulated tensor after convolution.
 +        """
 +        b, c, h, w = x.shape  # c = c_in
 +        # weight modulation
 +        style = self.modulation(style).view(b, 1, c, 1, 1)
 +        # self.weight: (1, c_out, c_in, k, k); style: (b, 1, c, 1, 1)
 +        weight = self.weight * style  # (b, c_out, c_in, k, k)
 +
 +        if self.demodulate:
 +            demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps)
 +            weight = weight * demod.view(b, self.out_channels, 1, 1, 1)
 +
 +        weight = weight.view(
 +            b * self.out_channels, c, self.kernel_size, self.kernel_size
 +        )
 +
 +        # upsample or downsample if necessary
 +        if self.sample_mode == "upsample":
 +            x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=False)
 +        elif self.sample_mode == "downsample":
 +            x = F.interpolate(x, scale_factor=0.5, mode="bilinear", align_corners=False)
 +
 +        b, c, h, w = x.shape
 +        x = x.view(1, b * c, h, w)
 +        # weight: (b*c_out, c_in, k, k), groups=b
 +        out = F.conv2d(x, weight, padding=self.padding, groups=b)
 +        out = out.view(b, self.out_channels, *out.shape[2:4])
 +
 +        return out
 +
 +    def __repr__(self):
 +        return (
 +            f"{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, "
 +            f"kernel_size={self.kernel_size}, demodulate={self.demodulate}, sample_mode={self.sample_mode})"
 +        )
 +
 +
 +class StyleConv(nn.Module):
 +    """Style conv used in StyleGAN2.
 +    Args:
 +        in_channels (int): Channel number of the input.
 +        out_channels (int): Channel number of the output.
 +        kernel_size (int): Size of the convolving kernel.
 +        num_style_feat (int): Channel number of style features.
 +        demodulate (bool): Whether demodulate in the conv layer. Default: True.
 +        sample_mode (str | None): Indicating 'upsample', 'downsample' or None. Default: None.
 +    """
 +
 +    def __init__(
 +        self,
 +        in_channels,
 +        out_channels,
 +        kernel_size,
 +        num_style_feat,
 +        demodulate=True,
 +        sample_mode=None,
 +    ):
 +        super(StyleConv, self).__init__()
 +        self.modulated_conv = ModulatedConv2d(
 +            in_channels,
 +            out_channels,
 +            kernel_size,
 +            num_style_feat,
 +            demodulate=demodulate,
 +            sample_mode=sample_mode,
 +        )
 +        self.weight = nn.Parameter(torch.zeros(1))  # for noise injection
 +        self.bias = nn.Parameter(torch.zeros(1, out_channels, 1, 1))
 +        self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True)
 +
 +    def forward(self, x, style, noise=None):
 +        # modulate
 +        out = self.modulated_conv(x, style) * 2**0.5  # for conversion
 +        # noise injection
 +        if noise is None:
 +            b, _, h, w = out.shape
 +            noise = out.new_empty(b, 1, h, w).normal_()
 +        out = out + self.weight * noise
 +        # add bias
 +        out = out + self.bias
 +        # activation
 +        out = self.activate(out)
 +        return out
 +
 +
 +class ToRGB(nn.Module):
 +    """To RGB (image space) from features.
 +    Args:
 +        in_channels (int): Channel number of input.
 +        num_style_feat (int): Channel number of style features.
 +        upsample (bool): Whether to upsample. Default: True.
 +    """
 +
 +    def __init__(self, in_channels, num_style_feat, upsample=True):
 +        super(ToRGB, self).__init__()
 +        self.upsample = upsample
 +        self.modulated_conv = ModulatedConv2d(
 +            in_channels,
 +            3,
 +            kernel_size=1,
 +            num_style_feat=num_style_feat,
 +            demodulate=False,
 +            sample_mode=None,
 +        )
 +        self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
 +
 +    def forward(self, x, style, skip=None):
 +        """Forward function.
 +        Args:
 +            x (Tensor): Feature tensor with shape (b, c, h, w).
 +            style (Tensor): Tensor with shape (b, num_style_feat).
 +            skip (Tensor): Base/skip tensor. Default: None.
 +        Returns:
 +            Tensor: RGB images.
 +        """
 +        out = self.modulated_conv(x, style)
 +        out = out + self.bias
 +        if skip is not None:
 +            if self.upsample:
 +                skip = F.interpolate(
 +                    skip, scale_factor=2, mode="bilinear", align_corners=False
 +                )
 +            out = out + skip
 +        return out
 +
 +
 +class ConstantInput(nn.Module):
 +    """Constant input.
 +    Args:
 +        num_channel (int): Channel number of constant input.
 +        size (int): Spatial size of constant input.
 +    """
 +
 +    def __init__(self, num_channel, size):
 +        super(ConstantInput, self).__init__()
 +        self.weight = nn.Parameter(torch.randn(1, num_channel, size, size))
 +
 +    def forward(self, batch):
 +        out = self.weight.repeat(batch, 1, 1, 1)
 +        return out
 +
 +
 +class StyleGAN2GeneratorClean(nn.Module):
 +    """Clean version of StyleGAN2 Generator.
 +    Args:
 +        out_size (int): The spatial size of outputs.
 +        num_style_feat (int): Channel number of style features. Default: 512.
 +        num_mlp (int): Layer number of MLP style layers. Default: 8.
 +        channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
 +        narrow (float): Narrow ratio for channels. Default: 1.0.
 +    """
 +
 +    def __init__(
 +        self, out_size, num_style_feat=512, num_mlp=8, channel_multiplier=2, narrow=1
 +    ):
 +        super(StyleGAN2GeneratorClean, self).__init__()
 +        # Style MLP layers
 +        self.num_style_feat = num_style_feat
 +        style_mlp_layers = [NormStyleCode()]
 +        for i in range(num_mlp):
 +            style_mlp_layers.extend(
 +                [
 +                    nn.Linear(num_style_feat, num_style_feat, bias=True),
 +                    nn.LeakyReLU(negative_slope=0.2, inplace=True),
 +                ]
 +            )
 +        self.style_mlp = nn.Sequential(*style_mlp_layers)
 +        # initialization
 +        default_init_weights(
 +            self.style_mlp,
 +            scale=1,
 +            bias_fill=0,
 +            a=0.2,
 +            mode="fan_in",
 +            nonlinearity="leaky_relu",
 +        )
 +
 +        # channel list
 +        channels = {
 +            "4": int(512 * narrow),
 +            "8": int(512 * narrow),
 +            "16": int(512 * narrow),
 +            "32": int(512 * narrow),
 +            "64": int(256 * channel_multiplier * narrow),
 +            "128": int(128 * channel_multiplier * narrow),
 +            "256": int(64 * channel_multiplier * narrow),
 +            "512": int(32 * channel_multiplier * narrow),
 +            "1024": int(16 * channel_multiplier * narrow),
 +        }
 +        self.channels = channels
 +
 +        self.constant_input = ConstantInput(channels["4"], size=4)
 +        self.style_conv1 = StyleConv(
 +            channels["4"],
 +            channels["4"],
 +            kernel_size=3,
 +            num_style_feat=num_style_feat,
 +            demodulate=True,
 +            sample_mode=None,
 +        )
 +        self.to_rgb1 = ToRGB(channels["4"], num_style_feat, upsample=False)
 +
 +        self.log_size = int(math.log(out_size, 2))
 +        self.num_layers = (self.log_size - 2) * 2 + 1
 +        self.num_latent = self.log_size * 2 - 2
 +
 +        self.style_convs = nn.ModuleList()
 +        self.to_rgbs = nn.ModuleList()
 +        self.noises = nn.Module()
 +
 +        in_channels = channels["4"]
 +        # noise
 +        for layer_idx in range(self.num_layers):
 +            resolution = 2 ** ((layer_idx + 5) // 2)
 +            shape = [1, 1, resolution, resolution]
 +            self.noises.register_buffer(f"noise{layer_idx}", torch.randn(*shape))
 +        # style convs and to_rgbs
 +        for i in range(3, self.log_size + 1):
 +            out_channels = channels[f"{2**i}"]
 +            self.style_convs.append(
 +                StyleConv(
 +                    in_channels,
 +                    out_channels,
 +                    kernel_size=3,
 +                    num_style_feat=num_style_feat,
 +                    demodulate=True,
 +                    sample_mode="upsample",
 +                )
 +            )
 +            self.style_convs.append(
 +                StyleConv(
 +                    out_channels,
 +                    out_channels,
 +                    kernel_size=3,
 +                    num_style_feat=num_style_feat,
 +                    demodulate=True,
 +                    sample_mode=None,
 +                )
 +            )
 +            self.to_rgbs.append(ToRGB(out_channels, num_style_feat, upsample=True))
 +            in_channels = out_channels
 +
 +    def make_noise(self):
 +        """Make noise for noise injection."""
 +        device = self.constant_input.weight.device
 +        noises = [torch.randn(1, 1, 4, 4, device=device)]
 +
 +        for i in range(3, self.log_size + 1):
 +            for _ in range(2):
 +                noises.append(torch.randn(1, 1, 2**i, 2**i, device=device))
 +
 +        return noises
 +
 +    def get_latent(self, x):
 +        return self.style_mlp(x)
 +
 +    def mean_latent(self, num_latent):
 +        latent_in = torch.randn(
 +            num_latent, self.num_style_feat, device=self.constant_input.weight.device
 +        )
 +        latent = self.style_mlp(latent_in).mean(0, keepdim=True)
 +        return latent
 +
 +    def forward(
 +        self,
 +        styles,
 +        input_is_latent=False,
 +        noise=None,
 +        randomize_noise=True,
 +        truncation=1,
 +        truncation_latent=None,
 +        inject_index=None,
 +        return_latents=False,
 +    ):
 +        """Forward function for StyleGAN2GeneratorClean.
 +        Args:
 +            styles (list[Tensor]): Sample codes of styles.
 +            input_is_latent (bool): Whether input is latent style. Default: False.
 +            noise (Tensor | None): Input noise or None. Default: None.
 +            randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
 +            truncation (float): The truncation ratio. Default: 1.
 +            truncation_latent (Tensor | None): The truncation latent tensor. Default: None.
 +            inject_index (int | None): The injection index for mixing noise. Default: None.
 +            return_latents (bool): Whether to return style latents. Default: False.
 +        """
 +        # style codes -> latents with Style MLP layer
 +        if not input_is_latent:
 +            styles = [self.style_mlp(s) for s in styles]
 +        # noises
 +        if noise is None:
 +            if randomize_noise:
 +                noise = [None] * self.num_layers  # for each style conv layer
 +            else:  # use the stored noise
 +                noise = [
 +                    getattr(self.noises, f"noise{i}") for i in range(self.num_layers)
 +                ]
 +        # style truncation
 +        if truncation < 1:
 +            style_truncation = []
 +            for style in styles:
 +                style_truncation.append(
 +                    truncation_latent + truncation * (style - truncation_latent)
 +                )
 +            styles = style_truncation
 +        # get style latents with injection
 +        if len(styles) == 1:
 +            inject_index = self.num_latent
 +
 +            if styles[0].ndim < 3:
 +                # repeat latent code for all the layers
 +                latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
 +            else:  # used for encoder with different latent code for each layer
 +                latent = styles[0]
 +        elif len(styles) == 2:  # mixing noises
 +            if inject_index is None:
 +                inject_index = random.randint(1, self.num_latent - 1)
 +            latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
 +            latent2 = (
 +                styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
 +            )
 +            latent = torch.cat([latent1, latent2], 1)
 +
 +        # main generation
 +        out = self.constant_input(latent.shape[0])
 +        out = self.style_conv1(out, latent[:, 0], noise=noise[0])
 +        skip = self.to_rgb1(out, latent[:, 1])
 +
 +        i = 1
 +        for conv1, conv2, noise1, noise2, to_rgb in zip(
 +            self.style_convs[::2],
 +            self.style_convs[1::2],
 +            noise[1::2],
 +            noise[2::2],
 +            self.to_rgbs,
 +        ):
 +            out = conv1(out, latent[:, i], noise=noise1)
 +            out = conv2(out, latent[:, i + 1], noise=noise2)
 +            skip = to_rgb(out, latent[:, i + 2], skip)  # feature back to the rgb space
 +            i += 2
 +
 +        image = skip
 +
 +        if return_latents:
 +            return image, latent
 +        else:
 +            return image, None
 diff --git a/r_chainner/model_loading.py b/r_chainner/model_loading.py new file mode 100644 index 0000000..21fd51d --- /dev/null +++ b/r_chainner/model_loading.py @@ -0,0 +1,28 @@ +from r_chainner.archs.face.gfpganv1_clean_arch import GFPGANv1Clean
 +from r_chainner.types import PyTorchModel
 +
 +
 +class UnsupportedModel(Exception):
 +    pass
 +
 +
 +def load_state_dict(state_dict) -> PyTorchModel:
 +
 +    state_dict_keys = list(state_dict.keys())
 +
 +    if "params_ema" in state_dict_keys:
 +        state_dict = state_dict["params_ema"]
 +    elif "params-ema" in state_dict_keys:
 +        state_dict = state_dict["params-ema"]
 +    elif "params" in state_dict_keys:
 +        state_dict = state_dict["params"]
 +
 +    state_dict_keys = list(state_dict.keys())
 +
 +    # GFPGAN
 +    if (
 +        "toRGB.0.weight" in state_dict_keys
 +        and "stylegan_decoder.style_mlp.1.weight" in state_dict_keys
 +    ):
 +        model = GFPGANv1Clean(state_dict)
 +    return model
 diff --git a/r_chainner/types.py b/r_chainner/types.py new file mode 100644 index 0000000..73e6a28 --- /dev/null +++ b/r_chainner/types.py @@ -0,0 +1,18 @@ +from typing import Union
 +
 +from r_chainner.archs.face.gfpganv1_clean_arch import GFPGANv1Clean
 +
 +
 +PyTorchFaceModels = (GFPGANv1Clean,)
 +PyTorchFaceModel = Union[GFPGANv1Clean]
 +
 +
 +def is_pytorch_face_model(model: object):
 +    return isinstance(model, PyTorchFaceModels)
 +
 +PyTorchModels = (*PyTorchFaceModels, )
 +PyTorchModel = Union[PyTorchFaceModel]
 +
 +
 +def is_pytorch_model(model: object):
 +    return isinstance(model, PyTorchModels)
 | 
