1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
|
# pylint: skip-file
# type: ignore
import math
import torch
from torch import nn
from torch.nn import functional as F
from torch.nn import init
from torch.nn.modules.batchnorm import _BatchNorm
@torch.no_grad()
def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs):
"""Initialize network weights.
Args:
module_list (list[nn.Module] | nn.Module): Modules to be initialized.
scale (float): Scale initialized weights, especially for residual
blocks. Default: 1.
bias_fill (float): The value to fill bias. Default: 0
kwargs (dict): Other arguments for initialization function.
"""
if not isinstance(module_list, list):
module_list = [module_list]
for module in module_list:
for m in module.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, **kwargs)
m.weight.data *= scale
if m.bias is not None:
m.bias.data.fill_(bias_fill)
elif isinstance(m, nn.Linear):
init.kaiming_normal_(m.weight, **kwargs)
m.weight.data *= scale
if m.bias is not None:
m.bias.data.fill_(bias_fill)
elif isinstance(m, _BatchNorm):
init.constant_(m.weight, 1)
if m.bias is not None:
m.bias.data.fill_(bias_fill)
class NormStyleCode(nn.Module):
def forward(self, x):
"""Normalize the style codes.
Args:
x (Tensor): Style codes with shape (b, c).
Returns:
Tensor: Normalized tensor.
"""
return x * torch.rsqrt(torch.mean(x**2, dim=1, keepdim=True) + 1e-8)
class ModulatedConv2d(nn.Module):
"""Modulated Conv2d used in StyleGAN2.
There is no bias in ModulatedConv2d.
Args:
in_channels (int): Channel number of the input.
out_channels (int): Channel number of the output.
kernel_size (int): Size of the convolving kernel.
num_style_feat (int): Channel number of style features.
demodulate (bool): Whether to demodulate in the conv layer. Default: True.
sample_mode (str | None): Indicating 'upsample', 'downsample' or None. Default: None.
eps (float): A value added to the denominator for numerical stability. Default: 1e-8.
"""
def __init__(
self,
in_channels,
out_channels,
kernel_size,
num_style_feat,
demodulate=True,
sample_mode=None,
eps=1e-8,
):
super(ModulatedConv2d, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.demodulate = demodulate
self.sample_mode = sample_mode
self.eps = eps
# modulation inside each modulated conv
self.modulation = nn.Linear(num_style_feat, in_channels, bias=True)
# initialization
default_init_weights(
self.modulation,
scale=1,
bias_fill=1,
a=0,
mode="fan_in",
nonlinearity="linear",
)
self.weight = nn.Parameter(
torch.randn(1, out_channels, in_channels, kernel_size, kernel_size)
/ math.sqrt(in_channels * kernel_size**2)
)
self.padding = kernel_size // 2
def forward(self, x, style):
"""Forward function.
Args:
x (Tensor): Tensor with shape (b, c, h, w).
style (Tensor): Tensor with shape (b, num_style_feat).
Returns:
Tensor: Modulated tensor after convolution.
"""
b, c, h, w = x.shape # c = c_in
# weight modulation
style = self.modulation(style).view(b, 1, c, 1, 1)
# self.weight: (1, c_out, c_in, k, k); style: (b, 1, c, 1, 1)
weight = self.weight * style # (b, c_out, c_in, k, k)
if self.demodulate:
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps)
weight = weight * demod.view(b, self.out_channels, 1, 1, 1)
weight = weight.view(
b * self.out_channels, c, self.kernel_size, self.kernel_size
)
# upsample or downsample if necessary
if self.sample_mode == "upsample":
x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=False)
elif self.sample_mode == "downsample":
x = F.interpolate(x, scale_factor=0.5, mode="bilinear", align_corners=False)
b, c, h, w = x.shape
x = x.view(1, b * c, h, w)
# weight: (b*c_out, c_in, k, k), groups=b
out = F.conv2d(x, weight, padding=self.padding, groups=b)
out = out.view(b, self.out_channels, *out.shape[2:4])
return out
def __repr__(self):
return (
f"{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, "
f"kernel_size={self.kernel_size}, demodulate={self.demodulate}, sample_mode={self.sample_mode})"
)
class StyleConv(nn.Module):
"""Style conv used in StyleGAN2.
Args:
in_channels (int): Channel number of the input.
out_channels (int): Channel number of the output.
kernel_size (int): Size of the convolving kernel.
num_style_feat (int): Channel number of style features.
demodulate (bool): Whether demodulate in the conv layer. Default: True.
sample_mode (str | None): Indicating 'upsample', 'downsample' or None. Default: None.
"""
def __init__(
self,
in_channels,
out_channels,
kernel_size,
num_style_feat,
demodulate=True,
sample_mode=None,
):
super(StyleConv, self).__init__()
self.modulated_conv = ModulatedConv2d(
in_channels,
out_channels,
kernel_size,
num_style_feat,
demodulate=demodulate,
sample_mode=sample_mode,
)
self.weight = nn.Parameter(torch.zeros(1)) # for noise injection
self.bias = nn.Parameter(torch.zeros(1, out_channels, 1, 1))
self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True)
def forward(self, x, style, noise=None):
# modulate
out = self.modulated_conv(x, style) * 2**0.5 # for conversion
# noise injection
if noise is None:
b, _, h, w = out.shape
noise = out.new_empty(b, 1, h, w).normal_()
out = out + self.weight * noise
# add bias
out = out + self.bias
# activation
out = self.activate(out)
return out
class ToRGB(nn.Module):
"""To RGB (image space) from features.
Args:
in_channels (int): Channel number of input.
num_style_feat (int): Channel number of style features.
upsample (bool): Whether to upsample. Default: True.
"""
def __init__(self, in_channels, num_style_feat, upsample=True):
super(ToRGB, self).__init__()
self.upsample = upsample
self.modulated_conv = ModulatedConv2d(
in_channels,
3,
kernel_size=1,
num_style_feat=num_style_feat,
demodulate=False,
sample_mode=None,
)
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
def forward(self, x, style, skip=None):
"""Forward function.
Args:
x (Tensor): Feature tensor with shape (b, c, h, w).
style (Tensor): Tensor with shape (b, num_style_feat).
skip (Tensor): Base/skip tensor. Default: None.
Returns:
Tensor: RGB images.
"""
out = self.modulated_conv(x, style)
out = out + self.bias
if skip is not None:
if self.upsample:
skip = F.interpolate(
skip, scale_factor=2, mode="bilinear", align_corners=False
)
out = out + skip
return out
class ConstantInput(nn.Module):
"""Constant input.
Args:
num_channel (int): Channel number of constant input.
size (int): Spatial size of constant input.
"""
def __init__(self, num_channel, size):
super(ConstantInput, self).__init__()
self.weight = nn.Parameter(torch.randn(1, num_channel, size, size))
def forward(self, batch):
out = self.weight.repeat(batch, 1, 1, 1)
return out
class StyleGAN2GeneratorClean(nn.Module):
"""Clean version of StyleGAN2 Generator.
Args:
out_size (int): The spatial size of outputs.
num_style_feat (int): Channel number of style features. Default: 512.
num_mlp (int): Layer number of MLP style layers. Default: 8.
channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
narrow (float): Narrow ratio for channels. Default: 1.0.
"""
def __init__(
self, out_size, num_style_feat=512, num_mlp=8, channel_multiplier=2, narrow=1
):
super(StyleGAN2GeneratorClean, self).__init__()
# Style MLP layers
self.num_style_feat = num_style_feat
style_mlp_layers = [NormStyleCode()]
for i in range(num_mlp):
style_mlp_layers.extend(
[
nn.Linear(num_style_feat, num_style_feat, bias=True),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
]
)
self.style_mlp = nn.Sequential(*style_mlp_layers)
# initialization
default_init_weights(
self.style_mlp,
scale=1,
bias_fill=0,
a=0.2,
mode="fan_in",
nonlinearity="leaky_relu",
)
# channel list
channels = {
"4": int(512 * narrow),
"8": int(512 * narrow),
"16": int(512 * narrow),
"32": int(512 * narrow),
"64": int(256 * channel_multiplier * narrow),
"128": int(128 * channel_multiplier * narrow),
"256": int(64 * channel_multiplier * narrow),
"512": int(32 * channel_multiplier * narrow),
"1024": int(16 * channel_multiplier * narrow),
}
self.channels = channels
self.constant_input = ConstantInput(channels["4"], size=4)
self.style_conv1 = StyleConv(
channels["4"],
channels["4"],
kernel_size=3,
num_style_feat=num_style_feat,
demodulate=True,
sample_mode=None,
)
self.to_rgb1 = ToRGB(channels["4"], num_style_feat, upsample=False)
self.log_size = int(math.log(out_size, 2))
self.num_layers = (self.log_size - 2) * 2 + 1
self.num_latent = self.log_size * 2 - 2
self.style_convs = nn.ModuleList()
self.to_rgbs = nn.ModuleList()
self.noises = nn.Module()
in_channels = channels["4"]
# noise
for layer_idx in range(self.num_layers):
resolution = 2 ** ((layer_idx + 5) // 2)
shape = [1, 1, resolution, resolution]
self.noises.register_buffer(f"noise{layer_idx}", torch.randn(*shape))
# style convs and to_rgbs
for i in range(3, self.log_size + 1):
out_channels = channels[f"{2**i}"]
self.style_convs.append(
StyleConv(
in_channels,
out_channels,
kernel_size=3,
num_style_feat=num_style_feat,
demodulate=True,
sample_mode="upsample",
)
)
self.style_convs.append(
StyleConv(
out_channels,
out_channels,
kernel_size=3,
num_style_feat=num_style_feat,
demodulate=True,
sample_mode=None,
)
)
self.to_rgbs.append(ToRGB(out_channels, num_style_feat, upsample=True))
in_channels = out_channels
def make_noise(self):
"""Make noise for noise injection."""
device = self.constant_input.weight.device
noises = [torch.randn(1, 1, 4, 4, device=device)]
for i in range(3, self.log_size + 1):
for _ in range(2):
noises.append(torch.randn(1, 1, 2**i, 2**i, device=device))
return noises
def get_latent(self, x):
return self.style_mlp(x)
def mean_latent(self, num_latent):
latent_in = torch.randn(
num_latent, self.num_style_feat, device=self.constant_input.weight.device
)
latent = self.style_mlp(latent_in).mean(0, keepdim=True)
return latent
def forward(
self,
styles,
input_is_latent=False,
noise=None,
randomize_noise=True,
truncation=1,
truncation_latent=None,
inject_index=None,
return_latents=False,
):
"""Forward function for StyleGAN2GeneratorClean.
Args:
styles (list[Tensor]): Sample codes of styles.
input_is_latent (bool): Whether input is latent style. Default: False.
noise (Tensor | None): Input noise or None. Default: None.
randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
truncation (float): The truncation ratio. Default: 1.
truncation_latent (Tensor | None): The truncation latent tensor. Default: None.
inject_index (int | None): The injection index for mixing noise. Default: None.
return_latents (bool): Whether to return style latents. Default: False.
"""
# style codes -> latents with Style MLP layer
if not input_is_latent:
styles = [self.style_mlp(s) for s in styles]
# noises
if noise is None:
if randomize_noise:
noise = [None] * self.num_layers # for each style conv layer
else: # use the stored noise
noise = [
getattr(self.noises, f"noise{i}") for i in range(self.num_layers)
]
# style truncation
if truncation < 1:
style_truncation = []
for style in styles:
style_truncation.append(
truncation_latent + truncation * (style - truncation_latent)
)
styles = style_truncation
# get style latents with injection
if len(styles) == 1:
inject_index = self.num_latent
if styles[0].ndim < 3:
# repeat latent code for all the layers
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
else: # used for encoder with different latent code for each layer
latent = styles[0]
elif len(styles) == 2: # mixing noises
if inject_index is None:
inject_index = random.randint(1, self.num_latent - 1)
latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
latent2 = (
styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
)
latent = torch.cat([latent1, latent2], 1)
# main generation
out = self.constant_input(latent.shape[0])
out = self.style_conv1(out, latent[:, 0], noise=noise[0])
skip = self.to_rgb1(out, latent[:, 1])
i = 1
for conv1, conv2, noise1, noise2, to_rgb in zip(
self.style_convs[::2],
self.style_convs[1::2],
noise[1::2],
noise[2::2],
self.to_rgbs,
):
out = conv1(out, latent[:, i], noise=noise1)
out = conv2(out, latent[:, i + 1], noise=noise2)
skip = to_rgb(out, latent[:, i + 2], skip) # feature back to the rgb space
i += 2
image = skip
if return_latents:
return image, latent
else:
return image, None
|