summaryrefslogtreecommitdiffstats
path: root/r_basicsr/data/reds_dataset.py
diff options
context:
space:
mode:
authorGrafting Rayman <156515434+GraftingRayman@users.noreply.github.com>2025-01-17 11:00:30 +0000
committerGitHub <noreply@github.com>2025-01-17 11:00:30 +0000
commit495ffc4777522e40941753e3b1b79c02f84b25b4 (patch)
tree5130fcb8676afdcb619a5e5eaef3ac28e135bc08 /r_basicsr/data/reds_dataset.py
parentfebd45814cd41560c5247aacb111d8d013f3a303 (diff)
downloadComfyui-reactor-node-495ffc4777522e40941753e3b1b79c02f84b25b4.tar.gz
Add files via upload
Diffstat (limited to 'r_basicsr/data/reds_dataset.py')
-rw-r--r--r_basicsr/data/reds_dataset.py360
1 files changed, 360 insertions, 0 deletions
diff --git a/r_basicsr/data/reds_dataset.py b/r_basicsr/data/reds_dataset.py
new file mode 100644
index 0000000..fa7df26
--- /dev/null
+++ b/r_basicsr/data/reds_dataset.py
@@ -0,0 +1,360 @@
+import numpy as np
+import random
+import torch
+from pathlib import Path
+from torch.utils import data as data
+
+from r_basicsr.data.transforms import augment, paired_random_crop
+from r_basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
+from r_basicsr.utils.flow_util import dequantize_flow
+from r_basicsr.utils.registry import DATASET_REGISTRY
+
+
+@DATASET_REGISTRY.register()
+class REDSDataset(data.Dataset):
+ """REDS dataset for training.
+
+ The keys are generated from a meta info txt file.
+ basicsr/data/meta_info/meta_info_REDS_GT.txt
+
+ Each line contains:
+ 1. subfolder (clip) name; 2. frame number; 3. image shape, separated by
+ a white space.
+ Examples:
+ 000 100 (720,1280,3)
+ 001 100 (720,1280,3)
+ ...
+
+ Key examples: "000/00000000"
+ GT (gt): Ground-Truth;
+ LQ (lq): Low-Quality, e.g., low-resolution/blurry/noisy/compressed frames.
+
+ Args:
+ opt (dict): Config for train dataset. It contains the following keys:
+ dataroot_gt (str): Data root path for gt.
+ dataroot_lq (str): Data root path for lq.
+ dataroot_flow (str, optional): Data root path for flow.
+ meta_info_file (str): Path for meta information file.
+ val_partition (str): Validation partition types. 'REDS4' or
+ 'official'.
+ io_backend (dict): IO backend type and other kwarg.
+
+ num_frame (int): Window size for input frames.
+ gt_size (int): Cropped patched size for gt patches.
+ interval_list (list): Interval list for temporal augmentation.
+ random_reverse (bool): Random reverse input frames.
+ use_hflip (bool): Use horizontal flips.
+ use_rot (bool): Use rotation (use vertical flip and transposing h
+ and w for implementation).
+
+ scale (bool): Scale, which will be added automatically.
+ """
+
+ def __init__(self, opt):
+ super(REDSDataset, self).__init__()
+ self.opt = opt
+ self.gt_root, self.lq_root = Path(opt['dataroot_gt']), Path(opt['dataroot_lq'])
+ self.flow_root = Path(opt['dataroot_flow']) if opt['dataroot_flow'] is not None else None
+ assert opt['num_frame'] % 2 == 1, (f'num_frame should be odd number, but got {opt["num_frame"]}')
+ self.num_frame = opt['num_frame']
+ self.num_half_frames = opt['num_frame'] // 2
+
+ self.keys = []
+ with open(opt['meta_info_file'], 'r') as fin:
+ for line in fin:
+ folder, frame_num, _ = line.split(' ')
+ self.keys.extend([f'{folder}/{i:08d}' for i in range(int(frame_num))])
+
+ # remove the video clips used in validation
+ if opt['val_partition'] == 'REDS4':
+ val_partition = ['000', '011', '015', '020']
+ elif opt['val_partition'] == 'official':
+ val_partition = [f'{v:03d}' for v in range(240, 270)]
+ else:
+ raise ValueError(f'Wrong validation partition {opt["val_partition"]}.'
+ f"Supported ones are ['official', 'REDS4'].")
+ self.keys = [v for v in self.keys if v.split('/')[0] not in val_partition]
+
+ # file client (io backend)
+ self.file_client = None
+ self.io_backend_opt = opt['io_backend']
+ self.is_lmdb = False
+ if self.io_backend_opt['type'] == 'lmdb':
+ self.is_lmdb = True
+ if self.flow_root is not None:
+ self.io_backend_opt['db_paths'] = [self.lq_root, self.gt_root, self.flow_root]
+ self.io_backend_opt['client_keys'] = ['lq', 'gt', 'flow']
+ else:
+ self.io_backend_opt['db_paths'] = [self.lq_root, self.gt_root]
+ self.io_backend_opt['client_keys'] = ['lq', 'gt']
+
+ # temporal augmentation configs
+ self.interval_list = opt['interval_list']
+ self.random_reverse = opt['random_reverse']
+ interval_str = ','.join(str(x) for x in opt['interval_list'])
+ logger = get_root_logger()
+ logger.info(f'Temporal augmentation interval list: [{interval_str}]; '
+ f'random reverse is {self.random_reverse}.')
+
+ def __getitem__(self, index):
+ if self.file_client is None:
+ self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
+
+ scale = self.opt['scale']
+ gt_size = self.opt['gt_size']
+ key = self.keys[index]
+ clip_name, frame_name = key.split('/') # key example: 000/00000000
+ center_frame_idx = int(frame_name)
+
+ # determine the neighboring frames
+ interval = random.choice(self.interval_list)
+
+ # ensure not exceeding the borders
+ start_frame_idx = center_frame_idx - self.num_half_frames * interval
+ end_frame_idx = center_frame_idx + self.num_half_frames * interval
+ # each clip has 100 frames starting from 0 to 99
+ while (start_frame_idx < 0) or (end_frame_idx > 99):
+ center_frame_idx = random.randint(0, 99)
+ start_frame_idx = (center_frame_idx - self.num_half_frames * interval)
+ end_frame_idx = center_frame_idx + self.num_half_frames * interval
+ frame_name = f'{center_frame_idx:08d}'
+ neighbor_list = list(range(start_frame_idx, end_frame_idx + 1, interval))
+ # random reverse
+ if self.random_reverse and random.random() < 0.5:
+ neighbor_list.reverse()
+
+ assert len(neighbor_list) == self.num_frame, (f'Wrong length of neighbor list: {len(neighbor_list)}')
+
+ # get the GT frame (as the center frame)
+ if self.is_lmdb:
+ img_gt_path = f'{clip_name}/{frame_name}'
+ else:
+ img_gt_path = self.gt_root / clip_name / f'{frame_name}.png'
+ img_bytes = self.file_client.get(img_gt_path, 'gt')
+ img_gt = imfrombytes(img_bytes, float32=True)
+
+ # get the neighboring LQ frames
+ img_lqs = []
+ for neighbor in neighbor_list:
+ if self.is_lmdb:
+ img_lq_path = f'{clip_name}/{neighbor:08d}'
+ else:
+ img_lq_path = self.lq_root / clip_name / f'{neighbor:08d}.png'
+ img_bytes = self.file_client.get(img_lq_path, 'lq')
+ img_lq = imfrombytes(img_bytes, float32=True)
+ img_lqs.append(img_lq)
+
+ # get flows
+ if self.flow_root is not None:
+ img_flows = []
+ # read previous flows
+ for i in range(self.num_half_frames, 0, -1):
+ if self.is_lmdb:
+ flow_path = f'{clip_name}/{frame_name}_p{i}'
+ else:
+ flow_path = (self.flow_root / clip_name / f'{frame_name}_p{i}.png')
+ img_bytes = self.file_client.get(flow_path, 'flow')
+ cat_flow = imfrombytes(img_bytes, flag='grayscale', float32=False) # uint8, [0, 255]
+ dx, dy = np.split(cat_flow, 2, axis=0)
+ flow = dequantize_flow(dx, dy, max_val=20, denorm=False) # we use max_val 20 here.
+ img_flows.append(flow)
+ # read next flows
+ for i in range(1, self.num_half_frames + 1):
+ if self.is_lmdb:
+ flow_path = f'{clip_name}/{frame_name}_n{i}'
+ else:
+ flow_path = (self.flow_root / clip_name / f'{frame_name}_n{i}.png')
+ img_bytes = self.file_client.get(flow_path, 'flow')
+ cat_flow = imfrombytes(img_bytes, flag='grayscale', float32=False) # uint8, [0, 255]
+ dx, dy = np.split(cat_flow, 2, axis=0)
+ flow = dequantize_flow(dx, dy, max_val=20, denorm=False) # we use max_val 20 here.
+ img_flows.append(flow)
+
+ # for random crop, here, img_flows and img_lqs have the same
+ # spatial size
+ img_lqs.extend(img_flows)
+
+ # randomly crop
+ img_gt, img_lqs = paired_random_crop(img_gt, img_lqs, gt_size, scale, img_gt_path)
+ if self.flow_root is not None:
+ img_lqs, img_flows = img_lqs[:self.num_frame], img_lqs[self.num_frame:]
+
+ # augmentation - flip, rotate
+ img_lqs.append(img_gt)
+ if self.flow_root is not None:
+ img_results, img_flows = augment(img_lqs, self.opt['use_hflip'], self.opt['use_rot'], img_flows)
+ else:
+ img_results = augment(img_lqs, self.opt['use_hflip'], self.opt['use_rot'])
+
+ img_results = img2tensor(img_results)
+ img_lqs = torch.stack(img_results[0:-1], dim=0)
+ img_gt = img_results[-1]
+
+ if self.flow_root is not None:
+ img_flows = img2tensor(img_flows)
+ # add the zero center flow
+ img_flows.insert(self.num_half_frames, torch.zeros_like(img_flows[0]))
+ img_flows = torch.stack(img_flows, dim=0)
+
+ # img_lqs: (t, c, h, w)
+ # img_flows: (t, 2, h, w)
+ # img_gt: (c, h, w)
+ # key: str
+ if self.flow_root is not None:
+ return {'lq': img_lqs, 'flow': img_flows, 'gt': img_gt, 'key': key}
+ else:
+ return {'lq': img_lqs, 'gt': img_gt, 'key': key}
+
+ def __len__(self):
+ return len(self.keys)
+
+
+@DATASET_REGISTRY.register()
+class REDSRecurrentDataset(data.Dataset):
+ """REDS dataset for training recurrent networks.
+
+ The keys are generated from a meta info txt file.
+ basicsr/data/meta_info/meta_info_REDS_GT.txt
+
+ Each line contains:
+ 1. subfolder (clip) name; 2. frame number; 3. image shape, separated by
+ a white space.
+ Examples:
+ 000 100 (720,1280,3)
+ 001 100 (720,1280,3)
+ ...
+
+ Key examples: "000/00000000"
+ GT (gt): Ground-Truth;
+ LQ (lq): Low-Quality, e.g., low-resolution/blurry/noisy/compressed frames.
+
+ Args:
+ opt (dict): Config for train dataset. It contains the following keys:
+ dataroot_gt (str): Data root path for gt.
+ dataroot_lq (str): Data root path for lq.
+ dataroot_flow (str, optional): Data root path for flow.
+ meta_info_file (str): Path for meta information file.
+ val_partition (str): Validation partition types. 'REDS4' or
+ 'official'.
+ io_backend (dict): IO backend type and other kwarg.
+
+ num_frame (int): Window size for input frames.
+ gt_size (int): Cropped patched size for gt patches.
+ interval_list (list): Interval list for temporal augmentation.
+ random_reverse (bool): Random reverse input frames.
+ use_hflip (bool): Use horizontal flips.
+ use_rot (bool): Use rotation (use vertical flip and transposing h
+ and w for implementation).
+
+ scale (bool): Scale, which will be added automatically.
+ """
+
+ def __init__(self, opt):
+ super(REDSRecurrentDataset, self).__init__()
+ self.opt = opt
+ self.gt_root, self.lq_root = Path(opt['dataroot_gt']), Path(opt['dataroot_lq'])
+ self.num_frame = opt['num_frame']
+
+ self.keys = []
+ with open(opt['meta_info_file'], 'r') as fin:
+ for line in fin:
+ folder, frame_num, _ = line.split(' ')
+ self.keys.extend([f'{folder}/{i:08d}' for i in range(int(frame_num))])
+
+ # remove the video clips used in validation
+ if opt['val_partition'] == 'REDS4':
+ val_partition = ['000', '011', '015', '020']
+ elif opt['val_partition'] == 'official':
+ val_partition = [f'{v:03d}' for v in range(240, 270)]
+ else:
+ raise ValueError(f'Wrong validation partition {opt["val_partition"]}.'
+ f"Supported ones are ['official', 'REDS4'].")
+ if opt['test_mode']:
+ self.keys = [v for v in self.keys if v.split('/')[0] in val_partition]
+ else:
+ self.keys = [v for v in self.keys if v.split('/')[0] not in val_partition]
+
+ # file client (io backend)
+ self.file_client = None
+ self.io_backend_opt = opt['io_backend']
+ self.is_lmdb = False
+ if self.io_backend_opt['type'] == 'lmdb':
+ self.is_lmdb = True
+ if hasattr(self, 'flow_root') and self.flow_root is not None:
+ self.io_backend_opt['db_paths'] = [self.lq_root, self.gt_root, self.flow_root]
+ self.io_backend_opt['client_keys'] = ['lq', 'gt', 'flow']
+ else:
+ self.io_backend_opt['db_paths'] = [self.lq_root, self.gt_root]
+ self.io_backend_opt['client_keys'] = ['lq', 'gt']
+
+ # temporal augmentation configs
+ self.interval_list = opt.get('interval_list', [1])
+ self.random_reverse = opt.get('random_reverse', False)
+ interval_str = ','.join(str(x) for x in self.interval_list)
+ logger = get_root_logger()
+ logger.info(f'Temporal augmentation interval list: [{interval_str}]; '
+ f'random reverse is {self.random_reverse}.')
+
+ def __getitem__(self, index):
+ if self.file_client is None:
+ self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
+
+ scale = self.opt['scale']
+ gt_size = self.opt['gt_size']
+ key = self.keys[index]
+ clip_name, frame_name = key.split('/') # key example: 000/00000000
+
+ # determine the neighboring frames
+ interval = random.choice(self.interval_list)
+
+ # ensure not exceeding the borders
+ start_frame_idx = int(frame_name)
+ if start_frame_idx > 100 - self.num_frame * interval:
+ start_frame_idx = random.randint(0, 100 - self.num_frame * interval)
+ end_frame_idx = start_frame_idx + self.num_frame * interval
+
+ neighbor_list = list(range(start_frame_idx, end_frame_idx, interval))
+
+ # random reverse
+ if self.random_reverse and random.random() < 0.5:
+ neighbor_list.reverse()
+
+ # get the neighboring LQ and GT frames
+ img_lqs = []
+ img_gts = []
+ for neighbor in neighbor_list:
+ if self.is_lmdb:
+ img_lq_path = f'{clip_name}/{neighbor:08d}'
+ img_gt_path = f'{clip_name}/{neighbor:08d}'
+ else:
+ img_lq_path = self.lq_root / clip_name / f'{neighbor:08d}.png'
+ img_gt_path = self.gt_root / clip_name / f'{neighbor:08d}.png'
+
+ # get LQ
+ img_bytes = self.file_client.get(img_lq_path, 'lq')
+ img_lq = imfrombytes(img_bytes, float32=True)
+ img_lqs.append(img_lq)
+
+ # get GT
+ img_bytes = self.file_client.get(img_gt_path, 'gt')
+ img_gt = imfrombytes(img_bytes, float32=True)
+ img_gts.append(img_gt)
+
+ # randomly crop
+ img_gts, img_lqs = paired_random_crop(img_gts, img_lqs, gt_size, scale, img_gt_path)
+
+ # augmentation - flip, rotate
+ img_lqs.extend(img_gts)
+ img_results = augment(img_lqs, self.opt['use_hflip'], self.opt['use_rot'])
+
+ img_results = img2tensor(img_results)
+ img_gts = torch.stack(img_results[len(img_lqs) // 2:], dim=0)
+ img_lqs = torch.stack(img_results[:len(img_lqs) // 2], dim=0)
+
+ # img_lqs: (t, c, h, w)
+ # img_gts: (t, c, h, w)
+ # key: str
+ return {'lq': img_lqs, 'gt': img_gts, 'key': key}
+
+ def __len__(self):
+ return len(self.keys)