From 495ffc4777522e40941753e3b1b79c02f84b25b4 Mon Sep 17 00:00:00 2001 From: Grafting Rayman <156515434+GraftingRayman@users.noreply.github.com> Date: Fri, 17 Jan 2025 11:00:30 +0000 Subject: Add files via upload --- r_basicsr/data/reds_dataset.py | 360 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 360 insertions(+) create mode 100644 r_basicsr/data/reds_dataset.py (limited to 'r_basicsr/data/reds_dataset.py') diff --git a/r_basicsr/data/reds_dataset.py b/r_basicsr/data/reds_dataset.py new file mode 100644 index 0000000..fa7df26 --- /dev/null +++ b/r_basicsr/data/reds_dataset.py @@ -0,0 +1,360 @@ +import numpy as np +import random +import torch +from pathlib import Path +from torch.utils import data as data + +from r_basicsr.data.transforms import augment, paired_random_crop +from r_basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor +from r_basicsr.utils.flow_util import dequantize_flow +from r_basicsr.utils.registry import DATASET_REGISTRY + + +@DATASET_REGISTRY.register() +class REDSDataset(data.Dataset): + """REDS dataset for training. + + The keys are generated from a meta info txt file. + basicsr/data/meta_info/meta_info_REDS_GT.txt + + Each line contains: + 1. subfolder (clip) name; 2. frame number; 3. image shape, separated by + a white space. + Examples: + 000 100 (720,1280,3) + 001 100 (720,1280,3) + ... + + Key examples: "000/00000000" + GT (gt): Ground-Truth; + LQ (lq): Low-Quality, e.g., low-resolution/blurry/noisy/compressed frames. + + Args: + opt (dict): Config for train dataset. It contains the following keys: + dataroot_gt (str): Data root path for gt. + dataroot_lq (str): Data root path for lq. + dataroot_flow (str, optional): Data root path for flow. + meta_info_file (str): Path for meta information file. + val_partition (str): Validation partition types. 'REDS4' or + 'official'. + io_backend (dict): IO backend type and other kwarg. + + num_frame (int): Window size for input frames. + gt_size (int): Cropped patched size for gt patches. + interval_list (list): Interval list for temporal augmentation. + random_reverse (bool): Random reverse input frames. + use_hflip (bool): Use horizontal flips. + use_rot (bool): Use rotation (use vertical flip and transposing h + and w for implementation). + + scale (bool): Scale, which will be added automatically. + """ + + def __init__(self, opt): + super(REDSDataset, self).__init__() + self.opt = opt + self.gt_root, self.lq_root = Path(opt['dataroot_gt']), Path(opt['dataroot_lq']) + self.flow_root = Path(opt['dataroot_flow']) if opt['dataroot_flow'] is not None else None + assert opt['num_frame'] % 2 == 1, (f'num_frame should be odd number, but got {opt["num_frame"]}') + self.num_frame = opt['num_frame'] + self.num_half_frames = opt['num_frame'] // 2 + + self.keys = [] + with open(opt['meta_info_file'], 'r') as fin: + for line in fin: + folder, frame_num, _ = line.split(' ') + self.keys.extend([f'{folder}/{i:08d}' for i in range(int(frame_num))]) + + # remove the video clips used in validation + if opt['val_partition'] == 'REDS4': + val_partition = ['000', '011', '015', '020'] + elif opt['val_partition'] == 'official': + val_partition = [f'{v:03d}' for v in range(240, 270)] + else: + raise ValueError(f'Wrong validation partition {opt["val_partition"]}.' + f"Supported ones are ['official', 'REDS4'].") + self.keys = [v for v in self.keys if v.split('/')[0] not in val_partition] + + # file client (io backend) + self.file_client = None + self.io_backend_opt = opt['io_backend'] + self.is_lmdb = False + if self.io_backend_opt['type'] == 'lmdb': + self.is_lmdb = True + if self.flow_root is not None: + self.io_backend_opt['db_paths'] = [self.lq_root, self.gt_root, self.flow_root] + self.io_backend_opt['client_keys'] = ['lq', 'gt', 'flow'] + else: + self.io_backend_opt['db_paths'] = [self.lq_root, self.gt_root] + self.io_backend_opt['client_keys'] = ['lq', 'gt'] + + # temporal augmentation configs + self.interval_list = opt['interval_list'] + self.random_reverse = opt['random_reverse'] + interval_str = ','.join(str(x) for x in opt['interval_list']) + logger = get_root_logger() + logger.info(f'Temporal augmentation interval list: [{interval_str}]; ' + f'random reverse is {self.random_reverse}.') + + def __getitem__(self, index): + if self.file_client is None: + self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt) + + scale = self.opt['scale'] + gt_size = self.opt['gt_size'] + key = self.keys[index] + clip_name, frame_name = key.split('/') # key example: 000/00000000 + center_frame_idx = int(frame_name) + + # determine the neighboring frames + interval = random.choice(self.interval_list) + + # ensure not exceeding the borders + start_frame_idx = center_frame_idx - self.num_half_frames * interval + end_frame_idx = center_frame_idx + self.num_half_frames * interval + # each clip has 100 frames starting from 0 to 99 + while (start_frame_idx < 0) or (end_frame_idx > 99): + center_frame_idx = random.randint(0, 99) + start_frame_idx = (center_frame_idx - self.num_half_frames * interval) + end_frame_idx = center_frame_idx + self.num_half_frames * interval + frame_name = f'{center_frame_idx:08d}' + neighbor_list = list(range(start_frame_idx, end_frame_idx + 1, interval)) + # random reverse + if self.random_reverse and random.random() < 0.5: + neighbor_list.reverse() + + assert len(neighbor_list) == self.num_frame, (f'Wrong length of neighbor list: {len(neighbor_list)}') + + # get the GT frame (as the center frame) + if self.is_lmdb: + img_gt_path = f'{clip_name}/{frame_name}' + else: + img_gt_path = self.gt_root / clip_name / f'{frame_name}.png' + img_bytes = self.file_client.get(img_gt_path, 'gt') + img_gt = imfrombytes(img_bytes, float32=True) + + # get the neighboring LQ frames + img_lqs = [] + for neighbor in neighbor_list: + if self.is_lmdb: + img_lq_path = f'{clip_name}/{neighbor:08d}' + else: + img_lq_path = self.lq_root / clip_name / f'{neighbor:08d}.png' + img_bytes = self.file_client.get(img_lq_path, 'lq') + img_lq = imfrombytes(img_bytes, float32=True) + img_lqs.append(img_lq) + + # get flows + if self.flow_root is not None: + img_flows = [] + # read previous flows + for i in range(self.num_half_frames, 0, -1): + if self.is_lmdb: + flow_path = f'{clip_name}/{frame_name}_p{i}' + else: + flow_path = (self.flow_root / clip_name / f'{frame_name}_p{i}.png') + img_bytes = self.file_client.get(flow_path, 'flow') + cat_flow = imfrombytes(img_bytes, flag='grayscale', float32=False) # uint8, [0, 255] + dx, dy = np.split(cat_flow, 2, axis=0) + flow = dequantize_flow(dx, dy, max_val=20, denorm=False) # we use max_val 20 here. + img_flows.append(flow) + # read next flows + for i in range(1, self.num_half_frames + 1): + if self.is_lmdb: + flow_path = f'{clip_name}/{frame_name}_n{i}' + else: + flow_path = (self.flow_root / clip_name / f'{frame_name}_n{i}.png') + img_bytes = self.file_client.get(flow_path, 'flow') + cat_flow = imfrombytes(img_bytes, flag='grayscale', float32=False) # uint8, [0, 255] + dx, dy = np.split(cat_flow, 2, axis=0) + flow = dequantize_flow(dx, dy, max_val=20, denorm=False) # we use max_val 20 here. + img_flows.append(flow) + + # for random crop, here, img_flows and img_lqs have the same + # spatial size + img_lqs.extend(img_flows) + + # randomly crop + img_gt, img_lqs = paired_random_crop(img_gt, img_lqs, gt_size, scale, img_gt_path) + if self.flow_root is not None: + img_lqs, img_flows = img_lqs[:self.num_frame], img_lqs[self.num_frame:] + + # augmentation - flip, rotate + img_lqs.append(img_gt) + if self.flow_root is not None: + img_results, img_flows = augment(img_lqs, self.opt['use_hflip'], self.opt['use_rot'], img_flows) + else: + img_results = augment(img_lqs, self.opt['use_hflip'], self.opt['use_rot']) + + img_results = img2tensor(img_results) + img_lqs = torch.stack(img_results[0:-1], dim=0) + img_gt = img_results[-1] + + if self.flow_root is not None: + img_flows = img2tensor(img_flows) + # add the zero center flow + img_flows.insert(self.num_half_frames, torch.zeros_like(img_flows[0])) + img_flows = torch.stack(img_flows, dim=0) + + # img_lqs: (t, c, h, w) + # img_flows: (t, 2, h, w) + # img_gt: (c, h, w) + # key: str + if self.flow_root is not None: + return {'lq': img_lqs, 'flow': img_flows, 'gt': img_gt, 'key': key} + else: + return {'lq': img_lqs, 'gt': img_gt, 'key': key} + + def __len__(self): + return len(self.keys) + + +@DATASET_REGISTRY.register() +class REDSRecurrentDataset(data.Dataset): + """REDS dataset for training recurrent networks. + + The keys are generated from a meta info txt file. + basicsr/data/meta_info/meta_info_REDS_GT.txt + + Each line contains: + 1. subfolder (clip) name; 2. frame number; 3. image shape, separated by + a white space. + Examples: + 000 100 (720,1280,3) + 001 100 (720,1280,3) + ... + + Key examples: "000/00000000" + GT (gt): Ground-Truth; + LQ (lq): Low-Quality, e.g., low-resolution/blurry/noisy/compressed frames. + + Args: + opt (dict): Config for train dataset. It contains the following keys: + dataroot_gt (str): Data root path for gt. + dataroot_lq (str): Data root path for lq. + dataroot_flow (str, optional): Data root path for flow. + meta_info_file (str): Path for meta information file. + val_partition (str): Validation partition types. 'REDS4' or + 'official'. + io_backend (dict): IO backend type and other kwarg. + + num_frame (int): Window size for input frames. + gt_size (int): Cropped patched size for gt patches. + interval_list (list): Interval list for temporal augmentation. + random_reverse (bool): Random reverse input frames. + use_hflip (bool): Use horizontal flips. + use_rot (bool): Use rotation (use vertical flip and transposing h + and w for implementation). + + scale (bool): Scale, which will be added automatically. + """ + + def __init__(self, opt): + super(REDSRecurrentDataset, self).__init__() + self.opt = opt + self.gt_root, self.lq_root = Path(opt['dataroot_gt']), Path(opt['dataroot_lq']) + self.num_frame = opt['num_frame'] + + self.keys = [] + with open(opt['meta_info_file'], 'r') as fin: + for line in fin: + folder, frame_num, _ = line.split(' ') + self.keys.extend([f'{folder}/{i:08d}' for i in range(int(frame_num))]) + + # remove the video clips used in validation + if opt['val_partition'] == 'REDS4': + val_partition = ['000', '011', '015', '020'] + elif opt['val_partition'] == 'official': + val_partition = [f'{v:03d}' for v in range(240, 270)] + else: + raise ValueError(f'Wrong validation partition {opt["val_partition"]}.' + f"Supported ones are ['official', 'REDS4'].") + if opt['test_mode']: + self.keys = [v for v in self.keys if v.split('/')[0] in val_partition] + else: + self.keys = [v for v in self.keys if v.split('/')[0] not in val_partition] + + # file client (io backend) + self.file_client = None + self.io_backend_opt = opt['io_backend'] + self.is_lmdb = False + if self.io_backend_opt['type'] == 'lmdb': + self.is_lmdb = True + if hasattr(self, 'flow_root') and self.flow_root is not None: + self.io_backend_opt['db_paths'] = [self.lq_root, self.gt_root, self.flow_root] + self.io_backend_opt['client_keys'] = ['lq', 'gt', 'flow'] + else: + self.io_backend_opt['db_paths'] = [self.lq_root, self.gt_root] + self.io_backend_opt['client_keys'] = ['lq', 'gt'] + + # temporal augmentation configs + self.interval_list = opt.get('interval_list', [1]) + self.random_reverse = opt.get('random_reverse', False) + interval_str = ','.join(str(x) for x in self.interval_list) + logger = get_root_logger() + logger.info(f'Temporal augmentation interval list: [{interval_str}]; ' + f'random reverse is {self.random_reverse}.') + + def __getitem__(self, index): + if self.file_client is None: + self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt) + + scale = self.opt['scale'] + gt_size = self.opt['gt_size'] + key = self.keys[index] + clip_name, frame_name = key.split('/') # key example: 000/00000000 + + # determine the neighboring frames + interval = random.choice(self.interval_list) + + # ensure not exceeding the borders + start_frame_idx = int(frame_name) + if start_frame_idx > 100 - self.num_frame * interval: + start_frame_idx = random.randint(0, 100 - self.num_frame * interval) + end_frame_idx = start_frame_idx + self.num_frame * interval + + neighbor_list = list(range(start_frame_idx, end_frame_idx, interval)) + + # random reverse + if self.random_reverse and random.random() < 0.5: + neighbor_list.reverse() + + # get the neighboring LQ and GT frames + img_lqs = [] + img_gts = [] + for neighbor in neighbor_list: + if self.is_lmdb: + img_lq_path = f'{clip_name}/{neighbor:08d}' + img_gt_path = f'{clip_name}/{neighbor:08d}' + else: + img_lq_path = self.lq_root / clip_name / f'{neighbor:08d}.png' + img_gt_path = self.gt_root / clip_name / f'{neighbor:08d}.png' + + # get LQ + img_bytes = self.file_client.get(img_lq_path, 'lq') + img_lq = imfrombytes(img_bytes, float32=True) + img_lqs.append(img_lq) + + # get GT + img_bytes = self.file_client.get(img_gt_path, 'gt') + img_gt = imfrombytes(img_bytes, float32=True) + img_gts.append(img_gt) + + # randomly crop + img_gts, img_lqs = paired_random_crop(img_gts, img_lqs, gt_size, scale, img_gt_path) + + # augmentation - flip, rotate + img_lqs.extend(img_gts) + img_results = augment(img_lqs, self.opt['use_hflip'], self.opt['use_rot']) + + img_results = img2tensor(img_results) + img_gts = torch.stack(img_results[len(img_lqs) // 2:], dim=0) + img_lqs = torch.stack(img_results[:len(img_lqs) // 2], dim=0) + + # img_lqs: (t, c, h, w) + # img_gts: (t, c, h, w) + # key: str + return {'lq': img_lqs, 'gt': img_gts, 'key': key} + + def __len__(self): + return len(self.keys) -- cgit v1.2.3