1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
|
import sys
import cv2
import numpy as np
import torch
from torchvision.transforms.functional import normalize
try:
import torch.cuda as cuda
except:
cuda = None
import comfy.utils
import folder_paths
import comfy.model_management as model_management
from scripts.reactor_logger import logger
from r_basicsr.utils.registry import ARCH_REGISTRY
from r_chainner import model_loading
from reactor_utils import (
tensor2img,
img2tensor,
set_ort_session,
prepare_cropped_face,
normalize_cropped_face
)
if cuda is not None:
if cuda.is_available():
providers = ["CUDAExecutionProvider"]
else:
providers = ["CPUExecutionProvider"]
else:
providers = ["CPUExecutionProvider"]
def get_restored_face(cropped_face,
face_restore_model,
face_restore_visibility,
codeformer_weight,
interpolation: str = "Bicubic"):
if interpolation == "Bicubic":
interpolate = cv2.INTER_CUBIC
elif interpolation == "Bilinear":
interpolate = cv2.INTER_LINEAR
elif interpolation == "Nearest":
interpolate = cv2.INTER_NEAREST
elif interpolation == "Lanczos":
interpolate = cv2.INTER_LANCZOS4
face_size = 512
if "1024" in face_restore_model.lower():
face_size = 1024
elif "2048" in face_restore_model.lower():
face_size = 2048
scale = face_size / cropped_face.shape[0]
logger.status(f"Boosting the Face with {face_restore_model} | Face Size is set to {face_size} with Scale Factor = {scale} and '{interpolation}' interpolation")
cropped_face = cv2.resize(cropped_face, (face_size, face_size), interpolation=interpolate)
# For upscaling the base 128px face, I found bicubic interpolation to be the best compromise targeting antialiasing
# and detail preservation. Nearest is predictably unusable, Linear produces too much aliasing, and Lanczos produces
# too many hallucinations and artifacts/fringing.
model_path = folder_paths.get_full_path("facerestore_models", face_restore_model)
device = model_management.get_torch_device()
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
try:
with torch.no_grad():
if ".onnx" in face_restore_model: # ONNX models
ort_session = set_ort_session(model_path, providers=providers)
ort_session_inputs = {}
facerestore_model = ort_session
for ort_session_input in ort_session.get_inputs():
if ort_session_input.name == "input":
cropped_face_prep = prepare_cropped_face(cropped_face)
ort_session_inputs[ort_session_input.name] = cropped_face_prep
if ort_session_input.name == "weight":
weight = np.array([1], dtype=np.double)
ort_session_inputs[ort_session_input.name] = weight
output = ort_session.run(None, ort_session_inputs)[0][0]
restored_face = normalize_cropped_face(output)
else: # PTH models
if "codeformer" in face_restore_model.lower():
codeformer_net = ARCH_REGISTRY.get("CodeFormer")(
dim_embd=512,
codebook_size=1024,
n_head=8,
n_layers=9,
connect_list=["32", "64", "128", "256"],
).to(device)
checkpoint = torch.load(model_path)["params_ema"]
codeformer_net.load_state_dict(checkpoint)
facerestore_model = codeformer_net.eval()
else:
sd = comfy.utils.load_torch_file(model_path, safe_load=True)
facerestore_model = model_loading.load_state_dict(sd).eval()
facerestore_model.to(device)
output = facerestore_model(cropped_face_t, w=codeformer_weight)[
0] if "codeformer" in face_restore_model.lower() else facerestore_model(cropped_face_t)[0]
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
del output
torch.cuda.empty_cache()
except Exception as error:
print(f"\tFailed inference: {error}", file=sys.stderr)
restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1))
if face_restore_visibility < 1:
restored_face = cropped_face * (1 - face_restore_visibility) + restored_face * face_restore_visibility
restored_face = restored_face.astype("uint8")
return restored_face, scale
|