1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
|
import cv2
import numpy as np
import os
import torch
from torchvision.transforms.functional import normalize
from r_facelib.detection import init_detection_model
from r_facelib.parsing import init_parsing_model
from r_facelib.utils.misc import img2tensor, imwrite
def get_largest_face(det_faces, h, w):
def get_location(val, length):
if val < 0:
return 0
elif val > length:
return length
else:
return val
face_areas = []
for det_face in det_faces:
left = get_location(det_face[0], w)
right = get_location(det_face[2], w)
top = get_location(det_face[1], h)
bottom = get_location(det_face[3], h)
face_area = (right - left) * (bottom - top)
face_areas.append(face_area)
largest_idx = face_areas.index(max(face_areas))
return det_faces[largest_idx], largest_idx
def get_center_face(det_faces, h=0, w=0, center=None):
if center is not None:
center = np.array(center)
else:
center = np.array([w / 2, h / 2])
center_dist = []
for det_face in det_faces:
face_center = np.array([(det_face[0] + det_face[2]) / 2, (det_face[1] + det_face[3]) / 2])
dist = np.linalg.norm(face_center - center)
center_dist.append(dist)
center_idx = center_dist.index(min(center_dist))
return det_faces[center_idx], center_idx
class FaceRestoreHelper(object):
"""Helper for the face restoration pipeline (base class)."""
def __init__(self,
upscale_factor,
face_size=512,
crop_ratio=(1, 1),
det_model='retinaface_resnet50',
save_ext='png',
template_3points=False,
pad_blur=False,
use_parse=False,
device=None):
self.template_3points = template_3points # improve robustness
self.upscale_factor = upscale_factor
# the cropped face ratio based on the square face
self.crop_ratio = crop_ratio # (h, w)
assert (self.crop_ratio[0] >= 1 and self.crop_ratio[1] >= 1), 'crop ration only supports >=1'
self.face_size = (int(face_size * self.crop_ratio[1]), int(face_size * self.crop_ratio[0]))
if self.template_3points:
self.face_template = np.array([[192, 240], [319, 240], [257, 371]])
else:
# standard 5 landmarks for FFHQ faces with 512 x 512
# facexlib
self.face_template = np.array([[192.98138, 239.94708], [318.90277, 240.1936], [256.63416, 314.01935],
[201.26117, 371.41043], [313.08905, 371.15118]])
# dlib: left_eye: 36:41 right_eye: 42:47 nose: 30,32,33,34 left mouth corner: 48 right mouth corner: 54
# self.face_template = np.array([[193.65928, 242.98541], [318.32558, 243.06108], [255.67984, 328.82894],
# [198.22603, 372.82502], [313.91018, 372.75659]])
self.face_template = self.face_template * (face_size / 512.0)
if self.crop_ratio[0] > 1:
self.face_template[:, 1] += face_size * (self.crop_ratio[0] - 1) / 2
if self.crop_ratio[1] > 1:
self.face_template[:, 0] += face_size * (self.crop_ratio[1] - 1) / 2
self.save_ext = save_ext
self.pad_blur = pad_blur
if self.pad_blur is True:
self.template_3points = False
self.all_landmarks_5 = []
self.det_faces = []
self.affine_matrices = []
self.inverse_affine_matrices = []
self.cropped_faces = []
self.restored_faces = []
self.pad_input_imgs = []
if device is None:
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
else:
self.device = device
# init face detection model
self.face_det = init_detection_model(det_model, half=False, device=self.device)
# init face parsing model
self.use_parse = use_parse
self.face_parse = init_parsing_model(model_name='parsenet', device=self.device)
def set_upscale_factor(self, upscale_factor):
self.upscale_factor = upscale_factor
def read_image(self, img):
"""img can be image path or cv2 loaded image."""
# self.input_img is Numpy array, (h, w, c), BGR, uint8, [0, 255]
if isinstance(img, str):
img = cv2.imread(img)
if np.max(img) > 256: # 16-bit image
img = img / 65535 * 255
if len(img.shape) == 2: # gray image
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
elif img.shape[2] == 4: # BGRA image with alpha channel
img = img[:, :, 0:3]
self.input_img = img
if min(self.input_img.shape[:2])<512:
f = 512.0/min(self.input_img.shape[:2])
self.input_img = cv2.resize(self.input_img, (0,0), fx=f, fy=f, interpolation=cv2.INTER_LINEAR)
def get_face_landmarks_5(self,
only_keep_largest=False,
only_center_face=False,
resize=None,
blur_ratio=0.01,
eye_dist_threshold=None):
if resize is None:
scale = 1
input_img = self.input_img
else:
h, w = self.input_img.shape[0:2]
scale = resize / min(h, w)
scale = max(1, scale) # always scale up
h, w = int(h * scale), int(w * scale)
interp = cv2.INTER_AREA if scale < 1 else cv2.INTER_LINEAR
input_img = cv2.resize(self.input_img, (w, h), interpolation=interp)
with torch.no_grad():
bboxes = self.face_det.detect_faces(input_img)
if bboxes is None or bboxes.shape[0] == 0:
return 0
else:
bboxes = bboxes / scale
for bbox in bboxes:
# remove faces with too small eye distance: side faces or too small faces
eye_dist = np.linalg.norm([bbox[6] - bbox[8], bbox[7] - bbox[9]])
if eye_dist_threshold is not None and (eye_dist < eye_dist_threshold):
continue
if self.template_3points:
landmark = np.array([[bbox[i], bbox[i + 1]] for i in range(5, 11, 2)])
else:
landmark = np.array([[bbox[i], bbox[i + 1]] for i in range(5, 15, 2)])
self.all_landmarks_5.append(landmark)
self.det_faces.append(bbox[0:5])
if len(self.det_faces) == 0:
return 0
if only_keep_largest:
h, w, _ = self.input_img.shape
self.det_faces, largest_idx = get_largest_face(self.det_faces, h, w)
self.all_landmarks_5 = [self.all_landmarks_5[largest_idx]]
elif only_center_face:
h, w, _ = self.input_img.shape
self.det_faces, center_idx = get_center_face(self.det_faces, h, w)
self.all_landmarks_5 = [self.all_landmarks_5[center_idx]]
# pad blurry images
if self.pad_blur:
self.pad_input_imgs = []
for landmarks in self.all_landmarks_5:
# get landmarks
eye_left = landmarks[0, :]
eye_right = landmarks[1, :]
eye_avg = (eye_left + eye_right) * 0.5
mouth_avg = (landmarks[3, :] + landmarks[4, :]) * 0.5
eye_to_eye = eye_right - eye_left
eye_to_mouth = mouth_avg - eye_avg
# Get the oriented crop rectangle
# x: half width of the oriented crop rectangle
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
# - np.flipud(eye_to_mouth) * [-1, 1]: rotate 90 clockwise
# norm with the hypotenuse: get the direction
x /= np.hypot(*x) # get the hypotenuse of a right triangle
rect_scale = 1.5
x *= max(np.hypot(*eye_to_eye) * 2.0 * rect_scale, np.hypot(*eye_to_mouth) * 1.8 * rect_scale)
# y: half height of the oriented crop rectangle
y = np.flipud(x) * [-1, 1]
# c: center
c = eye_avg + eye_to_mouth * 0.1
# quad: (left_top, left_bottom, right_bottom, right_top)
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
# qsize: side length of the square
qsize = np.hypot(*x) * 2
border = max(int(np.rint(qsize * 0.1)), 3)
# get pad
# pad: (width_left, height_top, width_right, height_bottom)
pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
int(np.ceil(max(quad[:, 1]))))
pad = [
max(-pad[0] + border, 1),
max(-pad[1] + border, 1),
max(pad[2] - self.input_img.shape[0] + border, 1),
max(pad[3] - self.input_img.shape[1] + border, 1)
]
if max(pad) > 1:
# pad image
pad_img = np.pad(self.input_img, ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
# modify landmark coords
landmarks[:, 0] += pad[0]
landmarks[:, 1] += pad[1]
# blur pad images
h, w, _ = pad_img.shape
y, x, _ = np.ogrid[:h, :w, :1]
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0],
np.float32(w - 1 - x) / pad[2]),
1.0 - np.minimum(np.float32(y) / pad[1],
np.float32(h - 1 - y) / pad[3]))
blur = int(qsize * blur_ratio)
if blur % 2 == 0:
blur += 1
blur_img = cv2.boxFilter(pad_img, 0, ksize=(blur, blur))
# blur_img = cv2.GaussianBlur(pad_img, (blur, blur), 0)
pad_img = pad_img.astype('float32')
pad_img += (blur_img - pad_img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
pad_img += (np.median(pad_img, axis=(0, 1)) - pad_img) * np.clip(mask, 0.0, 1.0)
pad_img = np.clip(pad_img, 0, 255) # float32, [0, 255]
self.pad_input_imgs.append(pad_img)
else:
self.pad_input_imgs.append(np.copy(self.input_img))
return len(self.all_landmarks_5)
def align_warp_face(self, save_cropped_path=None, border_mode='constant'):
"""Align and warp faces with face template.
"""
if self.pad_blur:
assert len(self.pad_input_imgs) == len(
self.all_landmarks_5), f'Mismatched samples: {len(self.pad_input_imgs)} and {len(self.all_landmarks_5)}'
for idx, landmark in enumerate(self.all_landmarks_5):
# use 5 landmarks to get affine matrix
# use cv2.LMEDS method for the equivalence to skimage transform
# ref: https://blog.csdn.net/yichxi/article/details/115827338
affine_matrix = cv2.estimateAffinePartial2D(landmark, self.face_template, method=cv2.LMEDS)[0]
self.affine_matrices.append(affine_matrix)
# warp and crop faces
if border_mode == 'constant':
border_mode = cv2.BORDER_CONSTANT
elif border_mode == 'reflect101':
border_mode = cv2.BORDER_REFLECT101
elif border_mode == 'reflect':
border_mode = cv2.BORDER_REFLECT
if self.pad_blur:
input_img = self.pad_input_imgs[idx]
else:
input_img = self.input_img
cropped_face = cv2.warpAffine(
input_img, affine_matrix, self.face_size, borderMode=border_mode, borderValue=(135, 133, 132)) # gray
self.cropped_faces.append(cropped_face)
# save the cropped face
if save_cropped_path is not None:
path = os.path.splitext(save_cropped_path)[0]
save_path = f'{path}_{idx:02d}.{self.save_ext}'
imwrite(cropped_face, save_path)
def get_inverse_affine(self, save_inverse_affine_path=None):
"""Get inverse affine matrix."""
for idx, affine_matrix in enumerate(self.affine_matrices):
inverse_affine = cv2.invertAffineTransform(affine_matrix)
inverse_affine *= self.upscale_factor
self.inverse_affine_matrices.append(inverse_affine)
# save inverse affine matrices
if save_inverse_affine_path is not None:
path, _ = os.path.splitext(save_inverse_affine_path)
save_path = f'{path}_{idx:02d}.pth'
torch.save(inverse_affine, save_path)
def add_restored_face(self, face):
self.restored_faces.append(face)
def paste_faces_to_input_image(self, save_path=None, upsample_img=None, draw_box=False, face_upsampler=None):
h, w, _ = self.input_img.shape
h_up, w_up = int(h * self.upscale_factor), int(w * self.upscale_factor)
if upsample_img is None:
# simply resize the background
# upsample_img = cv2.resize(self.input_img, (w_up, h_up), interpolation=cv2.INTER_LANCZOS4)
upsample_img = cv2.resize(self.input_img, (w_up, h_up), interpolation=cv2.INTER_LINEAR)
else:
upsample_img = cv2.resize(upsample_img, (w_up, h_up), interpolation=cv2.INTER_LANCZOS4)
assert len(self.restored_faces) == len(
self.inverse_affine_matrices), ('length of restored_faces and affine_matrices are different.')
inv_mask_borders = []
for restored_face, inverse_affine in zip(self.restored_faces, self.inverse_affine_matrices):
if face_upsampler is not None:
restored_face = face_upsampler.enhance(restored_face, outscale=self.upscale_factor)[0]
inverse_affine /= self.upscale_factor
inverse_affine[:, 2] *= self.upscale_factor
face_size = (self.face_size[0]*self.upscale_factor, self.face_size[1]*self.upscale_factor)
else:
# Add an offset to inverse affine matrix, for more precise back alignment
if self.upscale_factor > 1:
extra_offset = 0.5 * self.upscale_factor
else:
extra_offset = 0
inverse_affine[:, 2] += extra_offset
face_size = self.face_size
inv_restored = cv2.warpAffine(restored_face, inverse_affine, (w_up, h_up))
# if draw_box or not self.use_parse: # use square parse maps
# mask = np.ones(face_size, dtype=np.float32)
# inv_mask = cv2.warpAffine(mask, inverse_affine, (w_up, h_up))
# # remove the black borders
# inv_mask_erosion = cv2.erode(
# inv_mask, np.ones((int(2 * self.upscale_factor), int(2 * self.upscale_factor)), np.uint8))
# pasted_face = inv_mask_erosion[:, :, None] * inv_restored
# total_face_area = np.sum(inv_mask_erosion) # // 3
# # add border
# if draw_box:
# h, w = face_size
# mask_border = np.ones((h, w, 3), dtype=np.float32)
# border = int(1400/np.sqrt(total_face_area))
# mask_border[border:h-border, border:w-border,:] = 0
# inv_mask_border = cv2.warpAffine(mask_border, inverse_affine, (w_up, h_up))
# inv_mask_borders.append(inv_mask_border)
# if not self.use_parse:
# # compute the fusion edge based on the area of face
# w_edge = int(total_face_area**0.5) // 20
# erosion_radius = w_edge * 2
# inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8))
# blur_size = w_edge * 2
# inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0)
# if len(upsample_img.shape) == 2: # upsample_img is gray image
# upsample_img = upsample_img[:, :, None]
# inv_soft_mask = inv_soft_mask[:, :, None]
# always use square mask
mask = np.ones(face_size, dtype=np.float32)
inv_mask = cv2.warpAffine(mask, inverse_affine, (w_up, h_up))
# remove the black borders
inv_mask_erosion = cv2.erode(
inv_mask, np.ones((int(2 * self.upscale_factor), int(2 * self.upscale_factor)), np.uint8))
pasted_face = inv_mask_erosion[:, :, None] * inv_restored
total_face_area = np.sum(inv_mask_erosion) # // 3
# add border
if draw_box:
h, w = face_size
mask_border = np.ones((h, w, 3), dtype=np.float32)
border = int(1400/np.sqrt(total_face_area))
mask_border[border:h-border, border:w-border,:] = 0
inv_mask_border = cv2.warpAffine(mask_border, inverse_affine, (w_up, h_up))
inv_mask_borders.append(inv_mask_border)
# compute the fusion edge based on the area of face
w_edge = int(total_face_area**0.5) // 20
erosion_radius = w_edge * 2
inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8))
blur_size = w_edge * 2
inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0)
if len(upsample_img.shape) == 2: # upsample_img is gray image
upsample_img = upsample_img[:, :, None]
inv_soft_mask = inv_soft_mask[:, :, None]
# parse mask
if self.use_parse:
# inference
face_input = cv2.resize(restored_face, (512, 512), interpolation=cv2.INTER_LINEAR)
face_input = img2tensor(face_input.astype('float32') / 255., bgr2rgb=True, float32=True)
normalize(face_input, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
face_input = torch.unsqueeze(face_input, 0).to(self.device)
with torch.no_grad():
out = self.face_parse(face_input)[0]
out = out.argmax(dim=1).squeeze().cpu().numpy()
parse_mask = np.zeros(out.shape)
MASK_COLORMAP = [0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 255, 0, 0, 0]
for idx, color in enumerate(MASK_COLORMAP):
parse_mask[out == idx] = color
# blur the mask
parse_mask = cv2.GaussianBlur(parse_mask, (101, 101), 11)
parse_mask = cv2.GaussianBlur(parse_mask, (101, 101), 11)
# remove the black borders
thres = 10
parse_mask[:thres, :] = 0
parse_mask[-thres:, :] = 0
parse_mask[:, :thres] = 0
parse_mask[:, -thres:] = 0
parse_mask = parse_mask / 255.
parse_mask = cv2.resize(parse_mask, face_size)
parse_mask = cv2.warpAffine(parse_mask, inverse_affine, (w_up, h_up), flags=3)
inv_soft_parse_mask = parse_mask[:, :, None]
# pasted_face = inv_restored
fuse_mask = (inv_soft_parse_mask<inv_soft_mask).astype('int')
inv_soft_mask = inv_soft_parse_mask*fuse_mask + inv_soft_mask*(1-fuse_mask)
if len(upsample_img.shape) == 3 and upsample_img.shape[2] == 4: # alpha channel
alpha = upsample_img[:, :, 3:]
upsample_img = inv_soft_mask * pasted_face + (1 - inv_soft_mask) * upsample_img[:, :, 0:3]
upsample_img = np.concatenate((upsample_img, alpha), axis=2)
else:
upsample_img = inv_soft_mask * pasted_face + (1 - inv_soft_mask) * upsample_img
if np.max(upsample_img) > 256: # 16-bit image
upsample_img = upsample_img.astype(np.uint16)
else:
upsample_img = upsample_img.astype(np.uint8)
# draw bounding box
if draw_box:
# upsample_input_img = cv2.resize(input_img, (w_up, h_up))
img_color = np.ones([*upsample_img.shape], dtype=np.float32)
img_color[:,:,0] = 0
img_color[:,:,1] = 255
img_color[:,:,2] = 0
for inv_mask_border in inv_mask_borders:
upsample_img = inv_mask_border * img_color + (1 - inv_mask_border) * upsample_img
# upsample_input_img = inv_mask_border * img_color + (1 - inv_mask_border) * upsample_input_img
if save_path is not None:
path = os.path.splitext(save_path)[0]
save_path = f'{path}.{self.save_ext}'
imwrite(upsample_img, save_path)
return upsample_img
def clean_all(self):
self.all_landmarks_5 = []
self.restored_faces = []
self.affine_matrices = []
self.cropped_faces = []
self.inverse_affine_matrices = []
self.det_faces = []
self.pad_input_imgs = []
|