1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
|
import cv2
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image
from torchvision.models._utils import IntermediateLayerGetter as IntermediateLayerGetter
from modules import shared
from r_facelib.detection.align_trans import get_reference_facial_points, warp_and_crop_face
from r_facelib.detection.retinaface.retinaface_net import FPN, SSH, MobileNetV1, make_bbox_head, make_class_head, make_landmark_head
from r_facelib.detection.retinaface.retinaface_utils import (PriorBox, batched_decode, batched_decode_landm, decode, decode_landm,
py_cpu_nms)
#device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if torch.cuda.is_available():
device = torch.device('cuda')
elif torch.backends.mps.is_available():
device = torch.device('mps')
# elif hasattr(torch,'dml'):
# device = torch.device('dml')
elif hasattr(torch,'dml') or hasattr(torch,'privateuseone'): # AMD
if shared.cmd_opts is not None: # A1111
if shared.cmd_opts.device_id is not None:
device = torch.device(f'privateuseone:{shared.cmd_opts.device_id}')
else:
device = torch.device('privateuseone:0')
else:
device = torch.device('privateuseone:0')
else:
device = torch.device('cpu')
def generate_config(network_name):
cfg_mnet = {
'name': 'mobilenet0.25',
'min_sizes': [[16, 32], [64, 128], [256, 512]],
'steps': [8, 16, 32],
'variance': [0.1, 0.2],
'clip': False,
'loc_weight': 2.0,
'gpu_train': True,
'batch_size': 32,
'ngpu': 1,
'epoch': 250,
'decay1': 190,
'decay2': 220,
'image_size': 640,
'return_layers': {
'stage1': 1,
'stage2': 2,
'stage3': 3
},
'in_channel': 32,
'out_channel': 64
}
cfg_re50 = {
'name': 'Resnet50',
'min_sizes': [[16, 32], [64, 128], [256, 512]],
'steps': [8, 16, 32],
'variance': [0.1, 0.2],
'clip': False,
'loc_weight': 2.0,
'gpu_train': True,
'batch_size': 24,
'ngpu': 4,
'epoch': 100,
'decay1': 70,
'decay2': 90,
'image_size': 840,
'return_layers': {
'layer2': 1,
'layer3': 2,
'layer4': 3
},
'in_channel': 256,
'out_channel': 256
}
if network_name == 'mobile0.25':
return cfg_mnet
elif network_name == 'resnet50':
return cfg_re50
else:
raise NotImplementedError(f'network_name={network_name}')
class RetinaFace(nn.Module):
def __init__(self, network_name='resnet50', half=False, phase='test'):
super(RetinaFace, self).__init__()
self.half_inference = half
cfg = generate_config(network_name)
self.backbone = cfg['name']
self.model_name = f'retinaface_{network_name}'
self.cfg = cfg
self.phase = phase
self.target_size, self.max_size = 1600, 2150
self.resize, self.scale, self.scale1 = 1., None, None
self.mean_tensor = torch.tensor([[[[104.]], [[117.]], [[123.]]]]).to(device)
self.reference = get_reference_facial_points(default_square=True)
# Build network.
backbone = None
if cfg['name'] == 'mobilenet0.25':
backbone = MobileNetV1()
self.body = IntermediateLayerGetter(backbone, cfg['return_layers'])
elif cfg['name'] == 'Resnet50':
import torchvision.models as models
backbone = models.resnet50(pretrained=False)
self.body = IntermediateLayerGetter(backbone, cfg['return_layers'])
in_channels_stage2 = cfg['in_channel']
in_channels_list = [
in_channels_stage2 * 2,
in_channels_stage2 * 4,
in_channels_stage2 * 8,
]
out_channels = cfg['out_channel']
self.fpn = FPN(in_channels_list, out_channels)
self.ssh1 = SSH(out_channels, out_channels)
self.ssh2 = SSH(out_channels, out_channels)
self.ssh3 = SSH(out_channels, out_channels)
self.ClassHead = make_class_head(fpn_num=3, inchannels=cfg['out_channel'])
self.BboxHead = make_bbox_head(fpn_num=3, inchannels=cfg['out_channel'])
self.LandmarkHead = make_landmark_head(fpn_num=3, inchannels=cfg['out_channel'])
self.to(device)
self.eval()
if self.half_inference:
self.half()
def forward(self, inputs):
self.to(device)
out = self.body(inputs)
if self.backbone == 'mobilenet0.25' or self.backbone == 'Resnet50':
out = list(out.values())
# FPN
fpn = self.fpn(out)
# SSH
feature1 = self.ssh1(fpn[0])
feature2 = self.ssh2(fpn[1])
feature3 = self.ssh3(fpn[2])
features = [feature1, feature2, feature3]
bbox_regressions = torch.cat([self.BboxHead[i](feature) for i, feature in enumerate(features)], dim=1)
classifications = torch.cat([self.ClassHead[i](feature) for i, feature in enumerate(features)], dim=1)
tmp = [self.LandmarkHead[i](feature) for i, feature in enumerate(features)]
ldm_regressions = (torch.cat(tmp, dim=1))
if self.phase == 'train':
output = (bbox_regressions, classifications, ldm_regressions)
else:
output = (bbox_regressions, F.softmax(classifications, dim=-1), ldm_regressions)
return output
def __detect_faces(self, inputs):
# get scale
height, width = inputs.shape[2:]
self.scale = torch.tensor([width, height, width, height], dtype=torch.float32).to(device)
tmp = [width, height, width, height, width, height, width, height, width, height]
self.scale1 = torch.tensor(tmp, dtype=torch.float32).to(device)
# forawrd
inputs = inputs.to(device)
if self.half_inference:
inputs = inputs.half()
loc, conf, landmarks = self(inputs)
# get priorbox
priorbox = PriorBox(self.cfg, image_size=inputs.shape[2:])
priors = priorbox.forward().to(device)
return loc, conf, landmarks, priors
# single image detection
def transform(self, image, use_origin_size):
# convert to opencv format
if isinstance(image, Image.Image):
image = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
image = image.astype(np.float32)
# testing scale
im_size_min = np.min(image.shape[0:2])
im_size_max = np.max(image.shape[0:2])
resize = float(self.target_size) / float(im_size_min)
# prevent bigger axis from being more than max_size
if np.round(resize * im_size_max) > self.max_size:
resize = float(self.max_size) / float(im_size_max)
resize = 1 if use_origin_size else resize
# resize
if resize != 1:
image = cv2.resize(image, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR)
# convert to torch.tensor format
# image -= (104, 117, 123)
image = image.transpose(2, 0, 1)
image = torch.from_numpy(image).unsqueeze(0)
return image, resize
def detect_faces(
self,
image,
conf_threshold=0.8,
nms_threshold=0.4,
use_origin_size=True,
):
"""
Params:
imgs: BGR image
"""
image, self.resize = self.transform(image, use_origin_size)
image = image.to(device)
if self.half_inference:
image = image.half()
image = image - self.mean_tensor
loc, conf, landmarks, priors = self.__detect_faces(image)
boxes = decode(loc.data.squeeze(0), priors.data, self.cfg['variance'])
boxes = boxes * self.scale / self.resize
boxes = boxes.cpu().numpy()
scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
landmarks = decode_landm(landmarks.squeeze(0), priors, self.cfg['variance'])
landmarks = landmarks * self.scale1 / self.resize
landmarks = landmarks.cpu().numpy()
# ignore low scores
inds = np.where(scores > conf_threshold)[0]
boxes, landmarks, scores = boxes[inds], landmarks[inds], scores[inds]
# sort
order = scores.argsort()[::-1]
boxes, landmarks, scores = boxes[order], landmarks[order], scores[order]
# do NMS
bounding_boxes = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)
keep = py_cpu_nms(bounding_boxes, nms_threshold)
bounding_boxes, landmarks = bounding_boxes[keep, :], landmarks[keep]
# self.t['forward_pass'].toc()
# print(self.t['forward_pass'].average_time)
# import sys
# sys.stdout.flush()
return np.concatenate((bounding_boxes, landmarks), axis=1)
def __align_multi(self, image, boxes, landmarks, limit=None):
if len(boxes) < 1:
return [], []
if limit:
boxes = boxes[:limit]
landmarks = landmarks[:limit]
faces = []
for landmark in landmarks:
facial5points = [[landmark[2 * j], landmark[2 * j + 1]] for j in range(5)]
warped_face = warp_and_crop_face(np.array(image), facial5points, self.reference, crop_size=(112, 112))
faces.append(warped_face)
return np.concatenate((boxes, landmarks), axis=1), faces
def align_multi(self, img, conf_threshold=0.8, limit=None):
rlt = self.detect_faces(img, conf_threshold=conf_threshold)
boxes, landmarks = rlt[:, 0:5], rlt[:, 5:]
return self.__align_multi(img, boxes, landmarks, limit)
# batched detection
def batched_transform(self, frames, use_origin_size):
"""
Arguments:
frames: a list of PIL.Image, or torch.Tensor(shape=[n, h, w, c],
type=np.float32, BGR format).
use_origin_size: whether to use origin size.
"""
from_PIL = True if isinstance(frames[0], Image.Image) else False
# convert to opencv format
if from_PIL:
frames = [cv2.cvtColor(np.asarray(frame), cv2.COLOR_RGB2BGR) for frame in frames]
frames = np.asarray(frames, dtype=np.float32)
# testing scale
im_size_min = np.min(frames[0].shape[0:2])
im_size_max = np.max(frames[0].shape[0:2])
resize = float(self.target_size) / float(im_size_min)
# prevent bigger axis from being more than max_size
if np.round(resize * im_size_max) > self.max_size:
resize = float(self.max_size) / float(im_size_max)
resize = 1 if use_origin_size else resize
# resize
if resize != 1:
if not from_PIL:
frames = F.interpolate(frames, scale_factor=resize)
else:
frames = [
cv2.resize(frame, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR)
for frame in frames
]
# convert to torch.tensor format
if not from_PIL:
frames = frames.transpose(1, 2).transpose(1, 3).contiguous()
else:
frames = frames.transpose((0, 3, 1, 2))
frames = torch.from_numpy(frames)
return frames, resize
def batched_detect_faces(self, frames, conf_threshold=0.8, nms_threshold=0.4, use_origin_size=True):
"""
Arguments:
frames: a list of PIL.Image, or np.array(shape=[n, h, w, c],
type=np.uint8, BGR format).
conf_threshold: confidence threshold.
nms_threshold: nms threshold.
use_origin_size: whether to use origin size.
Returns:
final_bounding_boxes: list of np.array ([n_boxes, 5],
type=np.float32).
final_landmarks: list of np.array ([n_boxes, 10], type=np.float32).
"""
# self.t['forward_pass'].tic()
frames, self.resize = self.batched_transform(frames, use_origin_size)
frames = frames.to(device)
frames = frames - self.mean_tensor
b_loc, b_conf, b_landmarks, priors = self.__detect_faces(frames)
final_bounding_boxes, final_landmarks = [], []
# decode
priors = priors.unsqueeze(0)
b_loc = batched_decode(b_loc, priors, self.cfg['variance']) * self.scale / self.resize
b_landmarks = batched_decode_landm(b_landmarks, priors, self.cfg['variance']) * self.scale1 / self.resize
b_conf = b_conf[:, :, 1]
# index for selection
b_indice = b_conf > conf_threshold
# concat
b_loc_and_conf = torch.cat((b_loc, b_conf.unsqueeze(-1)), dim=2).float()
for pred, landm, inds in zip(b_loc_and_conf, b_landmarks, b_indice):
# ignore low scores
pred, landm = pred[inds, :], landm[inds, :]
if pred.shape[0] == 0:
final_bounding_boxes.append(np.array([], dtype=np.float32))
final_landmarks.append(np.array([], dtype=np.float32))
continue
# sort
# order = score.argsort(descending=True)
# box, landm, score = box[order], landm[order], score[order]
# to CPU
bounding_boxes, landm = pred.cpu().numpy(), landm.cpu().numpy()
# NMS
keep = py_cpu_nms(bounding_boxes, nms_threshold)
bounding_boxes, landmarks = bounding_boxes[keep, :], landm[keep]
# append
final_bounding_boxes.append(bounding_boxes)
final_landmarks.append(landmarks)
# self.t['forward_pass'].toc(average=True)
# self.batch_time += self.t['forward_pass'].diff
# self.total_frame += len(frames)
# print(self.batch_time / self.total_frame)
return final_bounding_boxes, final_landmarks
|