summaryrefslogtreecommitdiffstats
path: root/r_facelib/utils/face_restoration_helper.py
diff options
context:
space:
mode:
Diffstat (limited to 'r_facelib/utils/face_restoration_helper.py')
-rw-r--r--r_facelib/utils/face_restoration_helper.py455
1 files changed, 455 insertions, 0 deletions
diff --git a/r_facelib/utils/face_restoration_helper.py b/r_facelib/utils/face_restoration_helper.py
new file mode 100644
index 0000000..1db75c9
--- /dev/null
+++ b/r_facelib/utils/face_restoration_helper.py
@@ -0,0 +1,455 @@
+import cv2
+import numpy as np
+import os
+import torch
+from torchvision.transforms.functional import normalize
+
+from r_facelib.detection import init_detection_model
+from r_facelib.parsing import init_parsing_model
+from r_facelib.utils.misc import img2tensor, imwrite
+
+
+def get_largest_face(det_faces, h, w):
+
+ def get_location(val, length):
+ if val < 0:
+ return 0
+ elif val > length:
+ return length
+ else:
+ return val
+
+ face_areas = []
+ for det_face in det_faces:
+ left = get_location(det_face[0], w)
+ right = get_location(det_face[2], w)
+ top = get_location(det_face[1], h)
+ bottom = get_location(det_face[3], h)
+ face_area = (right - left) * (bottom - top)
+ face_areas.append(face_area)
+ largest_idx = face_areas.index(max(face_areas))
+ return det_faces[largest_idx], largest_idx
+
+
+def get_center_face(det_faces, h=0, w=0, center=None):
+ if center is not None:
+ center = np.array(center)
+ else:
+ center = np.array([w / 2, h / 2])
+ center_dist = []
+ for det_face in det_faces:
+ face_center = np.array([(det_face[0] + det_face[2]) / 2, (det_face[1] + det_face[3]) / 2])
+ dist = np.linalg.norm(face_center - center)
+ center_dist.append(dist)
+ center_idx = center_dist.index(min(center_dist))
+ return det_faces[center_idx], center_idx
+
+
+class FaceRestoreHelper(object):
+ """Helper for the face restoration pipeline (base class)."""
+
+ def __init__(self,
+ upscale_factor,
+ face_size=512,
+ crop_ratio=(1, 1),
+ det_model='retinaface_resnet50',
+ save_ext='png',
+ template_3points=False,
+ pad_blur=False,
+ use_parse=False,
+ device=None):
+ self.template_3points = template_3points # improve robustness
+ self.upscale_factor = upscale_factor
+ # the cropped face ratio based on the square face
+ self.crop_ratio = crop_ratio # (h, w)
+ assert (self.crop_ratio[0] >= 1 and self.crop_ratio[1] >= 1), 'crop ration only supports >=1'
+ self.face_size = (int(face_size * self.crop_ratio[1]), int(face_size * self.crop_ratio[0]))
+
+ if self.template_3points:
+ self.face_template = np.array([[192, 240], [319, 240], [257, 371]])
+ else:
+ # standard 5 landmarks for FFHQ faces with 512 x 512
+ # facexlib
+ self.face_template = np.array([[192.98138, 239.94708], [318.90277, 240.1936], [256.63416, 314.01935],
+ [201.26117, 371.41043], [313.08905, 371.15118]])
+
+ # dlib: left_eye: 36:41 right_eye: 42:47 nose: 30,32,33,34 left mouth corner: 48 right mouth corner: 54
+ # self.face_template = np.array([[193.65928, 242.98541], [318.32558, 243.06108], [255.67984, 328.82894],
+ # [198.22603, 372.82502], [313.91018, 372.75659]])
+
+
+ self.face_template = self.face_template * (face_size / 512.0)
+ if self.crop_ratio[0] > 1:
+ self.face_template[:, 1] += face_size * (self.crop_ratio[0] - 1) / 2
+ if self.crop_ratio[1] > 1:
+ self.face_template[:, 0] += face_size * (self.crop_ratio[1] - 1) / 2
+ self.save_ext = save_ext
+ self.pad_blur = pad_blur
+ if self.pad_blur is True:
+ self.template_3points = False
+
+ self.all_landmarks_5 = []
+ self.det_faces = []
+ self.affine_matrices = []
+ self.inverse_affine_matrices = []
+ self.cropped_faces = []
+ self.restored_faces = []
+ self.pad_input_imgs = []
+
+ if device is None:
+ self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
+ else:
+ self.device = device
+
+ # init face detection model
+ self.face_det = init_detection_model(det_model, half=False, device=self.device)
+
+ # init face parsing model
+ self.use_parse = use_parse
+ self.face_parse = init_parsing_model(model_name='parsenet', device=self.device)
+
+ def set_upscale_factor(self, upscale_factor):
+ self.upscale_factor = upscale_factor
+
+ def read_image(self, img):
+ """img can be image path or cv2 loaded image."""
+ # self.input_img is Numpy array, (h, w, c), BGR, uint8, [0, 255]
+ if isinstance(img, str):
+ img = cv2.imread(img)
+
+ if np.max(img) > 256: # 16-bit image
+ img = img / 65535 * 255
+ if len(img.shape) == 2: # gray image
+ img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
+ elif img.shape[2] == 4: # BGRA image with alpha channel
+ img = img[:, :, 0:3]
+
+ self.input_img = img
+
+ if min(self.input_img.shape[:2])<512:
+ f = 512.0/min(self.input_img.shape[:2])
+ self.input_img = cv2.resize(self.input_img, (0,0), fx=f, fy=f, interpolation=cv2.INTER_LINEAR)
+
+ def get_face_landmarks_5(self,
+ only_keep_largest=False,
+ only_center_face=False,
+ resize=None,
+ blur_ratio=0.01,
+ eye_dist_threshold=None):
+ if resize is None:
+ scale = 1
+ input_img = self.input_img
+ else:
+ h, w = self.input_img.shape[0:2]
+ scale = resize / min(h, w)
+ scale = max(1, scale) # always scale up
+ h, w = int(h * scale), int(w * scale)
+ interp = cv2.INTER_AREA if scale < 1 else cv2.INTER_LINEAR
+ input_img = cv2.resize(self.input_img, (w, h), interpolation=interp)
+
+ with torch.no_grad():
+ bboxes = self.face_det.detect_faces(input_img)
+
+ if bboxes is None or bboxes.shape[0] == 0:
+ return 0
+ else:
+ bboxes = bboxes / scale
+
+ for bbox in bboxes:
+ # remove faces with too small eye distance: side faces or too small faces
+ eye_dist = np.linalg.norm([bbox[6] - bbox[8], bbox[7] - bbox[9]])
+ if eye_dist_threshold is not None and (eye_dist < eye_dist_threshold):
+ continue
+
+ if self.template_3points:
+ landmark = np.array([[bbox[i], bbox[i + 1]] for i in range(5, 11, 2)])
+ else:
+ landmark = np.array([[bbox[i], bbox[i + 1]] for i in range(5, 15, 2)])
+ self.all_landmarks_5.append(landmark)
+ self.det_faces.append(bbox[0:5])
+
+ if len(self.det_faces) == 0:
+ return 0
+ if only_keep_largest:
+ h, w, _ = self.input_img.shape
+ self.det_faces, largest_idx = get_largest_face(self.det_faces, h, w)
+ self.all_landmarks_5 = [self.all_landmarks_5[largest_idx]]
+ elif only_center_face:
+ h, w, _ = self.input_img.shape
+ self.det_faces, center_idx = get_center_face(self.det_faces, h, w)
+ self.all_landmarks_5 = [self.all_landmarks_5[center_idx]]
+
+ # pad blurry images
+ if self.pad_blur:
+ self.pad_input_imgs = []
+ for landmarks in self.all_landmarks_5:
+ # get landmarks
+ eye_left = landmarks[0, :]
+ eye_right = landmarks[1, :]
+ eye_avg = (eye_left + eye_right) * 0.5
+ mouth_avg = (landmarks[3, :] + landmarks[4, :]) * 0.5
+ eye_to_eye = eye_right - eye_left
+ eye_to_mouth = mouth_avg - eye_avg
+
+ # Get the oriented crop rectangle
+ # x: half width of the oriented crop rectangle
+ x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
+ # - np.flipud(eye_to_mouth) * [-1, 1]: rotate 90 clockwise
+ # norm with the hypotenuse: get the direction
+ x /= np.hypot(*x) # get the hypotenuse of a right triangle
+ rect_scale = 1.5
+ x *= max(np.hypot(*eye_to_eye) * 2.0 * rect_scale, np.hypot(*eye_to_mouth) * 1.8 * rect_scale)
+ # y: half height of the oriented crop rectangle
+ y = np.flipud(x) * [-1, 1]
+
+ # c: center
+ c = eye_avg + eye_to_mouth * 0.1
+ # quad: (left_top, left_bottom, right_bottom, right_top)
+ quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
+ # qsize: side length of the square
+ qsize = np.hypot(*x) * 2
+ border = max(int(np.rint(qsize * 0.1)), 3)
+
+ # get pad
+ # pad: (width_left, height_top, width_right, height_bottom)
+ pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
+ int(np.ceil(max(quad[:, 1]))))
+ pad = [
+ max(-pad[0] + border, 1),
+ max(-pad[1] + border, 1),
+ max(pad[2] - self.input_img.shape[0] + border, 1),
+ max(pad[3] - self.input_img.shape[1] + border, 1)
+ ]
+
+ if max(pad) > 1:
+ # pad image
+ pad_img = np.pad(self.input_img, ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
+ # modify landmark coords
+ landmarks[:, 0] += pad[0]
+ landmarks[:, 1] += pad[1]
+ # blur pad images
+ h, w, _ = pad_img.shape
+ y, x, _ = np.ogrid[:h, :w, :1]
+ mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0],
+ np.float32(w - 1 - x) / pad[2]),
+ 1.0 - np.minimum(np.float32(y) / pad[1],
+ np.float32(h - 1 - y) / pad[3]))
+ blur = int(qsize * blur_ratio)
+ if blur % 2 == 0:
+ blur += 1
+ blur_img = cv2.boxFilter(pad_img, 0, ksize=(blur, blur))
+ # blur_img = cv2.GaussianBlur(pad_img, (blur, blur), 0)
+
+ pad_img = pad_img.astype('float32')
+ pad_img += (blur_img - pad_img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
+ pad_img += (np.median(pad_img, axis=(0, 1)) - pad_img) * np.clip(mask, 0.0, 1.0)
+ pad_img = np.clip(pad_img, 0, 255) # float32, [0, 255]
+ self.pad_input_imgs.append(pad_img)
+ else:
+ self.pad_input_imgs.append(np.copy(self.input_img))
+
+ return len(self.all_landmarks_5)
+
+ def align_warp_face(self, save_cropped_path=None, border_mode='constant'):
+ """Align and warp faces with face template.
+ """
+ if self.pad_blur:
+ assert len(self.pad_input_imgs) == len(
+ self.all_landmarks_5), f'Mismatched samples: {len(self.pad_input_imgs)} and {len(self.all_landmarks_5)}'
+ for idx, landmark in enumerate(self.all_landmarks_5):
+ # use 5 landmarks to get affine matrix
+ # use cv2.LMEDS method for the equivalence to skimage transform
+ # ref: https://blog.csdn.net/yichxi/article/details/115827338
+ affine_matrix = cv2.estimateAffinePartial2D(landmark, self.face_template, method=cv2.LMEDS)[0]
+ self.affine_matrices.append(affine_matrix)
+ # warp and crop faces
+ if border_mode == 'constant':
+ border_mode = cv2.BORDER_CONSTANT
+ elif border_mode == 'reflect101':
+ border_mode = cv2.BORDER_REFLECT101
+ elif border_mode == 'reflect':
+ border_mode = cv2.BORDER_REFLECT
+ if self.pad_blur:
+ input_img = self.pad_input_imgs[idx]
+ else:
+ input_img = self.input_img
+ cropped_face = cv2.warpAffine(
+ input_img, affine_matrix, self.face_size, borderMode=border_mode, borderValue=(135, 133, 132)) # gray
+ self.cropped_faces.append(cropped_face)
+ # save the cropped face
+ if save_cropped_path is not None:
+ path = os.path.splitext(save_cropped_path)[0]
+ save_path = f'{path}_{idx:02d}.{self.save_ext}'
+ imwrite(cropped_face, save_path)
+
+ def get_inverse_affine(self, save_inverse_affine_path=None):
+ """Get inverse affine matrix."""
+ for idx, affine_matrix in enumerate(self.affine_matrices):
+ inverse_affine = cv2.invertAffineTransform(affine_matrix)
+ inverse_affine *= self.upscale_factor
+ self.inverse_affine_matrices.append(inverse_affine)
+ # save inverse affine matrices
+ if save_inverse_affine_path is not None:
+ path, _ = os.path.splitext(save_inverse_affine_path)
+ save_path = f'{path}_{idx:02d}.pth'
+ torch.save(inverse_affine, save_path)
+
+
+ def add_restored_face(self, face):
+ self.restored_faces.append(face)
+
+
+ def paste_faces_to_input_image(self, save_path=None, upsample_img=None, draw_box=False, face_upsampler=None):
+ h, w, _ = self.input_img.shape
+ h_up, w_up = int(h * self.upscale_factor), int(w * self.upscale_factor)
+
+ if upsample_img is None:
+ # simply resize the background
+ # upsample_img = cv2.resize(self.input_img, (w_up, h_up), interpolation=cv2.INTER_LANCZOS4)
+ upsample_img = cv2.resize(self.input_img, (w_up, h_up), interpolation=cv2.INTER_LINEAR)
+ else:
+ upsample_img = cv2.resize(upsample_img, (w_up, h_up), interpolation=cv2.INTER_LANCZOS4)
+
+ assert len(self.restored_faces) == len(
+ self.inverse_affine_matrices), ('length of restored_faces and affine_matrices are different.')
+
+ inv_mask_borders = []
+ for restored_face, inverse_affine in zip(self.restored_faces, self.inverse_affine_matrices):
+ if face_upsampler is not None:
+ restored_face = face_upsampler.enhance(restored_face, outscale=self.upscale_factor)[0]
+ inverse_affine /= self.upscale_factor
+ inverse_affine[:, 2] *= self.upscale_factor
+ face_size = (self.face_size[0]*self.upscale_factor, self.face_size[1]*self.upscale_factor)
+ else:
+ # Add an offset to inverse affine matrix, for more precise back alignment
+ if self.upscale_factor > 1:
+ extra_offset = 0.5 * self.upscale_factor
+ else:
+ extra_offset = 0
+ inverse_affine[:, 2] += extra_offset
+ face_size = self.face_size
+ inv_restored = cv2.warpAffine(restored_face, inverse_affine, (w_up, h_up))
+
+ # if draw_box or not self.use_parse: # use square parse maps
+ # mask = np.ones(face_size, dtype=np.float32)
+ # inv_mask = cv2.warpAffine(mask, inverse_affine, (w_up, h_up))
+ # # remove the black borders
+ # inv_mask_erosion = cv2.erode(
+ # inv_mask, np.ones((int(2 * self.upscale_factor), int(2 * self.upscale_factor)), np.uint8))
+ # pasted_face = inv_mask_erosion[:, :, None] * inv_restored
+ # total_face_area = np.sum(inv_mask_erosion) # // 3
+ # # add border
+ # if draw_box:
+ # h, w = face_size
+ # mask_border = np.ones((h, w, 3), dtype=np.float32)
+ # border = int(1400/np.sqrt(total_face_area))
+ # mask_border[border:h-border, border:w-border,:] = 0
+ # inv_mask_border = cv2.warpAffine(mask_border, inverse_affine, (w_up, h_up))
+ # inv_mask_borders.append(inv_mask_border)
+ # if not self.use_parse:
+ # # compute the fusion edge based on the area of face
+ # w_edge = int(total_face_area**0.5) // 20
+ # erosion_radius = w_edge * 2
+ # inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8))
+ # blur_size = w_edge * 2
+ # inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0)
+ # if len(upsample_img.shape) == 2: # upsample_img is gray image
+ # upsample_img = upsample_img[:, :, None]
+ # inv_soft_mask = inv_soft_mask[:, :, None]
+
+ # always use square mask
+ mask = np.ones(face_size, dtype=np.float32)
+ inv_mask = cv2.warpAffine(mask, inverse_affine, (w_up, h_up))
+ # remove the black borders
+ inv_mask_erosion = cv2.erode(
+ inv_mask, np.ones((int(2 * self.upscale_factor), int(2 * self.upscale_factor)), np.uint8))
+ pasted_face = inv_mask_erosion[:, :, None] * inv_restored
+ total_face_area = np.sum(inv_mask_erosion) # // 3
+ # add border
+ if draw_box:
+ h, w = face_size
+ mask_border = np.ones((h, w, 3), dtype=np.float32)
+ border = int(1400/np.sqrt(total_face_area))
+ mask_border[border:h-border, border:w-border,:] = 0
+ inv_mask_border = cv2.warpAffine(mask_border, inverse_affine, (w_up, h_up))
+ inv_mask_borders.append(inv_mask_border)
+ # compute the fusion edge based on the area of face
+ w_edge = int(total_face_area**0.5) // 20
+ erosion_radius = w_edge * 2
+ inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8))
+ blur_size = w_edge * 2
+ inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0)
+ if len(upsample_img.shape) == 2: # upsample_img is gray image
+ upsample_img = upsample_img[:, :, None]
+ inv_soft_mask = inv_soft_mask[:, :, None]
+
+ # parse mask
+ if self.use_parse:
+ # inference
+ face_input = cv2.resize(restored_face, (512, 512), interpolation=cv2.INTER_LINEAR)
+ face_input = img2tensor(face_input.astype('float32') / 255., bgr2rgb=True, float32=True)
+ normalize(face_input, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
+ face_input = torch.unsqueeze(face_input, 0).to(self.device)
+ with torch.no_grad():
+ out = self.face_parse(face_input)[0]
+ out = out.argmax(dim=1).squeeze().cpu().numpy()
+
+ parse_mask = np.zeros(out.shape)
+ MASK_COLORMAP = [0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 255, 0, 0, 0]
+ for idx, color in enumerate(MASK_COLORMAP):
+ parse_mask[out == idx] = color
+ # blur the mask
+ parse_mask = cv2.GaussianBlur(parse_mask, (101, 101), 11)
+ parse_mask = cv2.GaussianBlur(parse_mask, (101, 101), 11)
+ # remove the black borders
+ thres = 10
+ parse_mask[:thres, :] = 0
+ parse_mask[-thres:, :] = 0
+ parse_mask[:, :thres] = 0
+ parse_mask[:, -thres:] = 0
+ parse_mask = parse_mask / 255.
+
+ parse_mask = cv2.resize(parse_mask, face_size)
+ parse_mask = cv2.warpAffine(parse_mask, inverse_affine, (w_up, h_up), flags=3)
+ inv_soft_parse_mask = parse_mask[:, :, None]
+ # pasted_face = inv_restored
+ fuse_mask = (inv_soft_parse_mask<inv_soft_mask).astype('int')
+ inv_soft_mask = inv_soft_parse_mask*fuse_mask + inv_soft_mask*(1-fuse_mask)
+
+ if len(upsample_img.shape) == 3 and upsample_img.shape[2] == 4: # alpha channel
+ alpha = upsample_img[:, :, 3:]
+ upsample_img = inv_soft_mask * pasted_face + (1 - inv_soft_mask) * upsample_img[:, :, 0:3]
+ upsample_img = np.concatenate((upsample_img, alpha), axis=2)
+ else:
+ upsample_img = inv_soft_mask * pasted_face + (1 - inv_soft_mask) * upsample_img
+
+ if np.max(upsample_img) > 256: # 16-bit image
+ upsample_img = upsample_img.astype(np.uint16)
+ else:
+ upsample_img = upsample_img.astype(np.uint8)
+
+ # draw bounding box
+ if draw_box:
+ # upsample_input_img = cv2.resize(input_img, (w_up, h_up))
+ img_color = np.ones([*upsample_img.shape], dtype=np.float32)
+ img_color[:,:,0] = 0
+ img_color[:,:,1] = 255
+ img_color[:,:,2] = 0
+ for inv_mask_border in inv_mask_borders:
+ upsample_img = inv_mask_border * img_color + (1 - inv_mask_border) * upsample_img
+ # upsample_input_img = inv_mask_border * img_color + (1 - inv_mask_border) * upsample_input_img
+
+ if save_path is not None:
+ path = os.path.splitext(save_path)[0]
+ save_path = f'{path}.{self.save_ext}'
+ imwrite(upsample_img, save_path)
+ return upsample_img
+
+ def clean_all(self):
+ self.all_landmarks_5 = []
+ self.restored_faces = []
+ self.affine_matrices = []
+ self.cropped_faces = []
+ self.inverse_affine_matrices = []
+ self.det_faces = []
+ self.pad_input_imgs = []