summaryrefslogtreecommitdiffstats
path: root/r_facelib/parsing/resnet.py
diff options
context:
space:
mode:
Diffstat (limited to 'r_facelib/parsing/resnet.py')
-rw-r--r--r_facelib/parsing/resnet.py69
1 files changed, 69 insertions, 0 deletions
diff --git a/r_facelib/parsing/resnet.py b/r_facelib/parsing/resnet.py
new file mode 100644
index 0000000..e7cc283
--- /dev/null
+++ b/r_facelib/parsing/resnet.py
@@ -0,0 +1,69 @@
+import torch.nn as nn
+import torch.nn.functional as F
+
+
+def conv3x3(in_planes, out_planes, stride=1):
+ """3x3 convolution with padding"""
+ return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
+
+
+class BasicBlock(nn.Module):
+
+ def __init__(self, in_chan, out_chan, stride=1):
+ super(BasicBlock, self).__init__()
+ self.conv1 = conv3x3(in_chan, out_chan, stride)
+ self.bn1 = nn.BatchNorm2d(out_chan)
+ self.conv2 = conv3x3(out_chan, out_chan)
+ self.bn2 = nn.BatchNorm2d(out_chan)
+ self.relu = nn.ReLU(inplace=True)
+ self.downsample = None
+ if in_chan != out_chan or stride != 1:
+ self.downsample = nn.Sequential(
+ nn.Conv2d(in_chan, out_chan, kernel_size=1, stride=stride, bias=False),
+ nn.BatchNorm2d(out_chan),
+ )
+
+ def forward(self, x):
+ residual = self.conv1(x)
+ residual = F.relu(self.bn1(residual))
+ residual = self.conv2(residual)
+ residual = self.bn2(residual)
+
+ shortcut = x
+ if self.downsample is not None:
+ shortcut = self.downsample(x)
+
+ out = shortcut + residual
+ out = self.relu(out)
+ return out
+
+
+def create_layer_basic(in_chan, out_chan, bnum, stride=1):
+ layers = [BasicBlock(in_chan, out_chan, stride=stride)]
+ for i in range(bnum - 1):
+ layers.append(BasicBlock(out_chan, out_chan, stride=1))
+ return nn.Sequential(*layers)
+
+
+class ResNet18(nn.Module):
+
+ def __init__(self):
+ super(ResNet18, self).__init__()
+ self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
+ self.bn1 = nn.BatchNorm2d(64)
+ self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
+ self.layer1 = create_layer_basic(64, 64, bnum=2, stride=1)
+ self.layer2 = create_layer_basic(64, 128, bnum=2, stride=2)
+ self.layer3 = create_layer_basic(128, 256, bnum=2, stride=2)
+ self.layer4 = create_layer_basic(256, 512, bnum=2, stride=2)
+
+ def forward(self, x):
+ x = self.conv1(x)
+ x = F.relu(self.bn1(x))
+ x = self.maxpool(x)
+
+ x = self.layer1(x)
+ feat8 = self.layer2(x) # 1/8
+ feat16 = self.layer3(feat8) # 1/16
+ feat32 = self.layer4(feat16) # 1/32
+ return feat8, feat16, feat32