summaryrefslogtreecommitdiffstats
path: root/r_facelib/detection/yolov5face/utils/datasets.py
diff options
context:
space:
mode:
Diffstat (limited to 'r_facelib/detection/yolov5face/utils/datasets.py')
-rw-r--r--r_facelib/detection/yolov5face/utils/datasets.py35
1 files changed, 35 insertions, 0 deletions
diff --git a/r_facelib/detection/yolov5face/utils/datasets.py b/r_facelib/detection/yolov5face/utils/datasets.py
new file mode 100644
index 0000000..a72609b
--- /dev/null
+++ b/r_facelib/detection/yolov5face/utils/datasets.py
@@ -0,0 +1,35 @@
+import cv2
+import numpy as np
+
+
+def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scale_fill=False, scaleup=True):
+ # Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
+ shape = img.shape[:2] # current shape [height, width]
+ if isinstance(new_shape, int):
+ new_shape = (new_shape, new_shape)
+
+ # Scale ratio (new / old)
+ r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
+ if not scaleup: # only scale down, do not scale up (for better test mAP)
+ r = min(r, 1.0)
+
+ # Compute padding
+ ratio = r, r # width, height ratios
+ new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
+ dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
+ if auto: # minimum rectangle
+ dw, dh = np.mod(dw, 64), np.mod(dh, 64) # wh padding
+ elif scale_fill: # stretch
+ dw, dh = 0.0, 0.0
+ new_unpad = (new_shape[1], new_shape[0])
+ ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
+
+ dw /= 2 # divide padding into 2 sides
+ dh /= 2
+
+ if shape[::-1] != new_unpad: # resize
+ img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
+ top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
+ left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
+ img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
+ return img, ratio, (dw, dh)