summaryrefslogtreecommitdiffstats
path: root/r_facelib/detection/yolov5face/face_detector.py
diff options
context:
space:
mode:
Diffstat (limited to 'r_facelib/detection/yolov5face/face_detector.py')
-rw-r--r--r_facelib/detection/yolov5face/face_detector.py141
1 files changed, 141 insertions, 0 deletions
diff --git a/r_facelib/detection/yolov5face/face_detector.py b/r_facelib/detection/yolov5face/face_detector.py
new file mode 100644
index 0000000..ca6d8e3
--- /dev/null
+++ b/r_facelib/detection/yolov5face/face_detector.py
@@ -0,0 +1,141 @@
+import copy
+from pathlib import Path
+
+import cv2
+import numpy as np
+import torch
+from torch import torch_version
+
+from r_facelib.detection.yolov5face.models.common import Conv
+from r_facelib.detection.yolov5face.models.yolo import Model
+from r_facelib.detection.yolov5face.utils.datasets import letterbox
+from r_facelib.detection.yolov5face.utils.general import (
+ check_img_size,
+ non_max_suppression_face,
+ scale_coords,
+ scale_coords_landmarks,
+)
+
+print(f"Torch version: {torch.__version__}")
+IS_HIGH_VERSION = torch_version.__version__ >= "1.9.0"
+
+def isListempty(inList):
+ if isinstance(inList, list): # Is a list
+ return all(map(isListempty, inList))
+ return False # Not a list
+
+class YoloDetector:
+ def __init__(
+ self,
+ config_name,
+ min_face=10,
+ target_size=None,
+ device='cuda',
+ ):
+ """
+ config_name: name of .yaml config with network configuration from models/ folder.
+ min_face : minimal face size in pixels.
+ target_size : target size of smaller image axis (choose lower for faster work). e.g. 480, 720, 1080.
+ None for original resolution.
+ """
+ self._class_path = Path(__file__).parent.absolute()
+ self.target_size = target_size
+ self.min_face = min_face
+ self.detector = Model(cfg=config_name)
+ self.device = device
+
+
+ def _preprocess(self, imgs):
+ """
+ Preprocessing image before passing through the network. Resize and conversion to torch tensor.
+ """
+ pp_imgs = []
+ for img in imgs:
+ h0, w0 = img.shape[:2] # orig hw
+ if self.target_size:
+ r = self.target_size / min(h0, w0) # resize image to img_size
+ if r < 1:
+ img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=cv2.INTER_LINEAR)
+
+ imgsz = check_img_size(max(img.shape[:2]), s=self.detector.stride.max()) # check img_size
+ img = letterbox(img, new_shape=imgsz)[0]
+ pp_imgs.append(img)
+ pp_imgs = np.array(pp_imgs)
+ pp_imgs = pp_imgs.transpose(0, 3, 1, 2)
+ pp_imgs = torch.from_numpy(pp_imgs).to(self.device)
+ pp_imgs = pp_imgs.float() # uint8 to fp16/32
+ return pp_imgs / 255.0 # 0 - 255 to 0.0 - 1.0
+
+ def _postprocess(self, imgs, origimgs, pred, conf_thres, iou_thres):
+ """
+ Postprocessing of raw pytorch model output.
+ Returns:
+ bboxes: list of arrays with 4 coordinates of bounding boxes with format x1,y1,x2,y2.
+ points: list of arrays with coordinates of 5 facial keypoints (eyes, nose, lips corners).
+ """
+ bboxes = [[] for _ in range(len(origimgs))]
+ landmarks = [[] for _ in range(len(origimgs))]
+
+ pred = non_max_suppression_face(pred, conf_thres, iou_thres)
+
+ for image_id, origimg in enumerate(origimgs):
+ img_shape = origimg.shape
+ image_height, image_width = img_shape[:2]
+ gn = torch.tensor(img_shape)[[1, 0, 1, 0]] # normalization gain whwh
+ gn_lks = torch.tensor(img_shape)[[1, 0, 1, 0, 1, 0, 1, 0, 1, 0]] # normalization gain landmarks
+ det = pred[image_id].cpu()
+ scale_coords(imgs[image_id].shape[1:], det[:, :4], img_shape).round()
+ scale_coords_landmarks(imgs[image_id].shape[1:], det[:, 5:15], img_shape).round()
+
+ for j in range(det.size()[0]):
+ box = (det[j, :4].view(1, 4) / gn).view(-1).tolist()
+ box = list(
+ map(int, [box[0] * image_width, box[1] * image_height, box[2] * image_width, box[3] * image_height])
+ )
+ if box[3] - box[1] < self.min_face:
+ continue
+ lm = (det[j, 5:15].view(1, 10) / gn_lks).view(-1).tolist()
+ lm = list(map(int, [i * image_width if j % 2 == 0 else i * image_height for j, i in enumerate(lm)]))
+ lm = [lm[i : i + 2] for i in range(0, len(lm), 2)]
+ bboxes[image_id].append(box)
+ landmarks[image_id].append(lm)
+ return bboxes, landmarks
+
+ def detect_faces(self, imgs, conf_thres=0.7, iou_thres=0.5):
+ """
+ Get bbox coordinates and keypoints of faces on original image.
+ Params:
+ imgs: image or list of images to detect faces on with BGR order (convert to RGB order for inference)
+ conf_thres: confidence threshold for each prediction
+ iou_thres: threshold for NMS (filter of intersecting bboxes)
+ Returns:
+ bboxes: list of arrays with 4 coordinates of bounding boxes with format x1,y1,x2,y2.
+ points: list of arrays with coordinates of 5 facial keypoints (eyes, nose, lips corners).
+ """
+ # Pass input images through face detector
+ images = imgs if isinstance(imgs, list) else [imgs]
+ images = [cv2.cvtColor(img, cv2.COLOR_BGR2RGB) for img in images]
+ origimgs = copy.deepcopy(images)
+
+ images = self._preprocess(images)
+
+ if IS_HIGH_VERSION:
+ with torch.inference_mode(): # for pytorch>=1.9
+ pred = self.detector(images)[0]
+ else:
+ with torch.no_grad(): # for pytorch<1.9
+ pred = self.detector(images)[0]
+
+ bboxes, points = self._postprocess(images, origimgs, pred, conf_thres, iou_thres)
+
+ # return bboxes, points
+ if not isListempty(points):
+ bboxes = np.array(bboxes).reshape(-1,4)
+ points = np.array(points).reshape(-1,10)
+ padding = bboxes[:,0].reshape(-1,1)
+ return np.concatenate((bboxes, padding, points), axis=1)
+ else:
+ return None
+
+ def __call__(self, *args):
+ return self.predict(*args)