summaryrefslogtreecommitdiffstats
path: root/r_basicsr/ops/fused_act/fused_act.py
diff options
context:
space:
mode:
Diffstat (limited to 'r_basicsr/ops/fused_act/fused_act.py')
-rw-r--r--r_basicsr/ops/fused_act/fused_act.py95
1 files changed, 95 insertions, 0 deletions
diff --git a/r_basicsr/ops/fused_act/fused_act.py b/r_basicsr/ops/fused_act/fused_act.py
new file mode 100644
index 0000000..876c959
--- /dev/null
+++ b/r_basicsr/ops/fused_act/fused_act.py
@@ -0,0 +1,95 @@
+# modify from https://github.com/rosinality/stylegan2-pytorch/blob/master/op/fused_act.py # noqa:E501
+
+import os
+import torch
+from torch import nn
+from torch.autograd import Function
+
+BASICSR_JIT = os.getenv('BASICSR_JIT')
+if BASICSR_JIT == 'True':
+ from torch.utils.cpp_extension import load
+ module_path = os.path.dirname(__file__)
+ fused_act_ext = load(
+ 'fused',
+ sources=[
+ os.path.join(module_path, 'src', 'fused_bias_act.cpp'),
+ os.path.join(module_path, 'src', 'fused_bias_act_kernel.cu'),
+ ],
+ )
+else:
+ try:
+ from . import fused_act_ext
+ except ImportError:
+ pass
+ # avoid annoying print output
+ # print(f'Cannot import deform_conv_ext. Error: {error}. You may need to: \n '
+ # '1. compile with BASICSR_EXT=True. or\n '
+ # '2. set BASICSR_JIT=True during running')
+
+
+class FusedLeakyReLUFunctionBackward(Function):
+
+ @staticmethod
+ def forward(ctx, grad_output, out, negative_slope, scale):
+ ctx.save_for_backward(out)
+ ctx.negative_slope = negative_slope
+ ctx.scale = scale
+
+ empty = grad_output.new_empty(0)
+
+ grad_input = fused_act_ext.fused_bias_act(grad_output, empty, out, 3, 1, negative_slope, scale)
+
+ dim = [0]
+
+ if grad_input.ndim > 2:
+ dim += list(range(2, grad_input.ndim))
+
+ grad_bias = grad_input.sum(dim).detach()
+
+ return grad_input, grad_bias
+
+ @staticmethod
+ def backward(ctx, gradgrad_input, gradgrad_bias):
+ out, = ctx.saved_tensors
+ gradgrad_out = fused_act_ext.fused_bias_act(gradgrad_input, gradgrad_bias, out, 3, 1, ctx.negative_slope,
+ ctx.scale)
+
+ return gradgrad_out, None, None, None
+
+
+class FusedLeakyReLUFunction(Function):
+
+ @staticmethod
+ def forward(ctx, input, bias, negative_slope, scale):
+ empty = input.new_empty(0)
+ out = fused_act_ext.fused_bias_act(input, bias, empty, 3, 0, negative_slope, scale)
+ ctx.save_for_backward(out)
+ ctx.negative_slope = negative_slope
+ ctx.scale = scale
+
+ return out
+
+ @staticmethod
+ def backward(ctx, grad_output):
+ out, = ctx.saved_tensors
+
+ grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply(grad_output, out, ctx.negative_slope, ctx.scale)
+
+ return grad_input, grad_bias, None, None
+
+
+class FusedLeakyReLU(nn.Module):
+
+ def __init__(self, channel, negative_slope=0.2, scale=2**0.5):
+ super().__init__()
+
+ self.bias = nn.Parameter(torch.zeros(channel))
+ self.negative_slope = negative_slope
+ self.scale = scale
+
+ def forward(self, input):
+ return fused_leaky_relu(input, self.bias, self.negative_slope, self.scale)
+
+
+def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2**0.5):
+ return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale)