diff options
Diffstat (limited to 'r_basicsr/models/lr_scheduler.py')
-rw-r--r-- | r_basicsr/models/lr_scheduler.py | 96 |
1 files changed, 96 insertions, 0 deletions
diff --git a/r_basicsr/models/lr_scheduler.py b/r_basicsr/models/lr_scheduler.py new file mode 100644 index 0000000..084122d --- /dev/null +++ b/r_basicsr/models/lr_scheduler.py @@ -0,0 +1,96 @@ +import math
+from collections import Counter
+from torch.optim.lr_scheduler import _LRScheduler
+
+
+class MultiStepRestartLR(_LRScheduler):
+ """ MultiStep with restarts learning rate scheme.
+
+ Args:
+ optimizer (torch.nn.optimizer): Torch optimizer.
+ milestones (list): Iterations that will decrease learning rate.
+ gamma (float): Decrease ratio. Default: 0.1.
+ restarts (list): Restart iterations. Default: [0].
+ restart_weights (list): Restart weights at each restart iteration.
+ Default: [1].
+ last_epoch (int): Used in _LRScheduler. Default: -1.
+ """
+
+ def __init__(self, optimizer, milestones, gamma=0.1, restarts=(0, ), restart_weights=(1, ), last_epoch=-1):
+ self.milestones = Counter(milestones)
+ self.gamma = gamma
+ self.restarts = restarts
+ self.restart_weights = restart_weights
+ assert len(self.restarts) == len(self.restart_weights), 'restarts and their weights do not match.'
+ super(MultiStepRestartLR, self).__init__(optimizer, last_epoch)
+
+ def get_lr(self):
+ if self.last_epoch in self.restarts:
+ weight = self.restart_weights[self.restarts.index(self.last_epoch)]
+ return [group['initial_lr'] * weight for group in self.optimizer.param_groups]
+ if self.last_epoch not in self.milestones:
+ return [group['lr'] for group in self.optimizer.param_groups]
+ return [group['lr'] * self.gamma**self.milestones[self.last_epoch] for group in self.optimizer.param_groups]
+
+
+def get_position_from_periods(iteration, cumulative_period):
+ """Get the position from a period list.
+
+ It will return the index of the right-closest number in the period list.
+ For example, the cumulative_period = [100, 200, 300, 400],
+ if iteration == 50, return 0;
+ if iteration == 210, return 2;
+ if iteration == 300, return 2.
+
+ Args:
+ iteration (int): Current iteration.
+ cumulative_period (list[int]): Cumulative period list.
+
+ Returns:
+ int: The position of the right-closest number in the period list.
+ """
+ for i, period in enumerate(cumulative_period):
+ if iteration <= period:
+ return i
+
+
+class CosineAnnealingRestartLR(_LRScheduler):
+ """ Cosine annealing with restarts learning rate scheme.
+
+ An example of config:
+ periods = [10, 10, 10, 10]
+ restart_weights = [1, 0.5, 0.5, 0.5]
+ eta_min=1e-7
+
+ It has four cycles, each has 10 iterations. At 10th, 20th, 30th, the
+ scheduler will restart with the weights in restart_weights.
+
+ Args:
+ optimizer (torch.nn.optimizer): Torch optimizer.
+ periods (list): Period for each cosine anneling cycle.
+ restart_weights (list): Restart weights at each restart iteration.
+ Default: [1].
+ eta_min (float): The minimum lr. Default: 0.
+ last_epoch (int): Used in _LRScheduler. Default: -1.
+ """
+
+ def __init__(self, optimizer, periods, restart_weights=(1, ), eta_min=0, last_epoch=-1):
+ self.periods = periods
+ self.restart_weights = restart_weights
+ self.eta_min = eta_min
+ assert (len(self.periods) == len(
+ self.restart_weights)), 'periods and restart_weights should have the same length.'
+ self.cumulative_period = [sum(self.periods[0:i + 1]) for i in range(0, len(self.periods))]
+ super(CosineAnnealingRestartLR, self).__init__(optimizer, last_epoch)
+
+ def get_lr(self):
+ idx = get_position_from_periods(self.last_epoch, self.cumulative_period)
+ current_weight = self.restart_weights[idx]
+ nearest_restart = 0 if idx == 0 else self.cumulative_period[idx - 1]
+ current_period = self.periods[idx]
+
+ return [
+ self.eta_min + current_weight * 0.5 * (base_lr - self.eta_min) *
+ (1 + math.cos(math.pi * ((self.last_epoch - nearest_restart) / current_period)))
+ for base_lr in self.base_lrs
+ ]
|