diff options
Diffstat (limited to 'r_basicsr/data/single_image_dataset.py')
-rw-r--r-- | r_basicsr/data/single_image_dataset.py | 68 |
1 files changed, 68 insertions, 0 deletions
diff --git a/r_basicsr/data/single_image_dataset.py b/r_basicsr/data/single_image_dataset.py new file mode 100644 index 0000000..91bda89 --- /dev/null +++ b/r_basicsr/data/single_image_dataset.py @@ -0,0 +1,68 @@ +from os import path as osp
+from torch.utils import data as data
+from torchvision.transforms.functional import normalize
+
+from r_basicsr.data.data_util import paths_from_lmdb
+from r_basicsr.utils import FileClient, imfrombytes, img2tensor, rgb2ycbcr, scandir
+from r_basicsr.utils.registry import DATASET_REGISTRY
+
+
+@DATASET_REGISTRY.register()
+class SingleImageDataset(data.Dataset):
+ """Read only lq images in the test phase.
+
+ Read LQ (Low Quality, e.g. LR (Low Resolution), blurry, noisy, etc).
+
+ There are two modes:
+ 1. 'meta_info_file': Use meta information file to generate paths.
+ 2. 'folder': Scan folders to generate paths.
+
+ Args:
+ opt (dict): Config for train datasets. It contains the following keys:
+ dataroot_lq (str): Data root path for lq.
+ meta_info_file (str): Path for meta information file.
+ io_backend (dict): IO backend type and other kwarg.
+ """
+
+ def __init__(self, opt):
+ super(SingleImageDataset, self).__init__()
+ self.opt = opt
+ # file client (io backend)
+ self.file_client = None
+ self.io_backend_opt = opt['io_backend']
+ self.mean = opt['mean'] if 'mean' in opt else None
+ self.std = opt['std'] if 'std' in opt else None
+ self.lq_folder = opt['dataroot_lq']
+
+ if self.io_backend_opt['type'] == 'lmdb':
+ self.io_backend_opt['db_paths'] = [self.lq_folder]
+ self.io_backend_opt['client_keys'] = ['lq']
+ self.paths = paths_from_lmdb(self.lq_folder)
+ elif 'meta_info_file' in self.opt:
+ with open(self.opt['meta_info_file'], 'r') as fin:
+ self.paths = [osp.join(self.lq_folder, line.rstrip().split(' ')[0]) for line in fin]
+ else:
+ self.paths = sorted(list(scandir(self.lq_folder, full_path=True)))
+
+ def __getitem__(self, index):
+ if self.file_client is None:
+ self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
+
+ # load lq image
+ lq_path = self.paths[index]
+ img_bytes = self.file_client.get(lq_path, 'lq')
+ img_lq = imfrombytes(img_bytes, float32=True)
+
+ # color space transform
+ if 'color' in self.opt and self.opt['color'] == 'y':
+ img_lq = rgb2ycbcr(img_lq, y_only=True)[..., None]
+
+ # BGR to RGB, HWC to CHW, numpy to tensor
+ img_lq = img2tensor(img_lq, bgr2rgb=True, float32=True)
+ # normalize
+ if self.mean is not None or self.std is not None:
+ normalize(img_lq, self.mean, self.std, inplace=True)
+ return {'lq': img_lq, 'lq_path': lq_path}
+
+ def __len__(self):
+ return len(self.paths)
|