summaryrefslogtreecommitdiffstats
path: root/r_basicsr/data/realesrgan_dataset.py
diff options
context:
space:
mode:
Diffstat (limited to 'r_basicsr/data/realesrgan_dataset.py')
-rw-r--r--r_basicsr/data/realesrgan_dataset.py193
1 files changed, 193 insertions, 0 deletions
diff --git a/r_basicsr/data/realesrgan_dataset.py b/r_basicsr/data/realesrgan_dataset.py
new file mode 100644
index 0000000..dd9ae11
--- /dev/null
+++ b/r_basicsr/data/realesrgan_dataset.py
@@ -0,0 +1,193 @@
+import cv2
+import math
+import numpy as np
+import os
+import os.path as osp
+import random
+import time
+import torch
+from torch.utils import data as data
+
+from r_basicsr.data.degradations import circular_lowpass_kernel, random_mixed_kernels
+from r_basicsr.data.transforms import augment
+from r_basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
+from r_basicsr.utils.registry import DATASET_REGISTRY
+
+
+@DATASET_REGISTRY.register(suffix='basicsr')
+class RealESRGANDataset(data.Dataset):
+ """Dataset used for Real-ESRGAN model:
+ Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data.
+
+ It loads gt (Ground-Truth) images, and augments them.
+ It also generates blur kernels and sinc kernels for generating low-quality images.
+ Note that the low-quality images are processed in tensors on GPUS for faster processing.
+
+ Args:
+ opt (dict): Config for train datasets. It contains the following keys:
+ dataroot_gt (str): Data root path for gt.
+ meta_info (str): Path for meta information file.
+ io_backend (dict): IO backend type and other kwarg.
+ use_hflip (bool): Use horizontal flips.
+ use_rot (bool): Use rotation (use vertical flip and transposing h and w for implementation).
+ Please see more options in the codes.
+ """
+
+ def __init__(self, opt):
+ super(RealESRGANDataset, self).__init__()
+ self.opt = opt
+ self.file_client = None
+ self.io_backend_opt = opt['io_backend']
+ self.gt_folder = opt['dataroot_gt']
+
+ # file client (lmdb io backend)
+ if self.io_backend_opt['type'] == 'lmdb':
+ self.io_backend_opt['db_paths'] = [self.gt_folder]
+ self.io_backend_opt['client_keys'] = ['gt']
+ if not self.gt_folder.endswith('.lmdb'):
+ raise ValueError(f"'dataroot_gt' should end with '.lmdb', but received {self.gt_folder}")
+ with open(osp.join(self.gt_folder, 'meta_info.txt')) as fin:
+ self.paths = [line.split('.')[0] for line in fin]
+ else:
+ # disk backend with meta_info
+ # Each line in the meta_info describes the relative path to an image
+ with open(self.opt['meta_info']) as fin:
+ paths = [line.strip().split(' ')[0] for line in fin]
+ self.paths = [os.path.join(self.gt_folder, v) for v in paths]
+
+ # blur settings for the first degradation
+ self.blur_kernel_size = opt['blur_kernel_size']
+ self.kernel_list = opt['kernel_list']
+ self.kernel_prob = opt['kernel_prob'] # a list for each kernel probability
+ self.blur_sigma = opt['blur_sigma']
+ self.betag_range = opt['betag_range'] # betag used in generalized Gaussian blur kernels
+ self.betap_range = opt['betap_range'] # betap used in plateau blur kernels
+ self.sinc_prob = opt['sinc_prob'] # the probability for sinc filters
+
+ # blur settings for the second degradation
+ self.blur_kernel_size2 = opt['blur_kernel_size2']
+ self.kernel_list2 = opt['kernel_list2']
+ self.kernel_prob2 = opt['kernel_prob2']
+ self.blur_sigma2 = opt['blur_sigma2']
+ self.betag_range2 = opt['betag_range2']
+ self.betap_range2 = opt['betap_range2']
+ self.sinc_prob2 = opt['sinc_prob2']
+
+ # a final sinc filter
+ self.final_sinc_prob = opt['final_sinc_prob']
+
+ self.kernel_range = [2 * v + 1 for v in range(3, 11)] # kernel size ranges from 7 to 21
+ # TODO: kernel range is now hard-coded, should be in the configure file
+ self.pulse_tensor = torch.zeros(21, 21).float() # convolving with pulse tensor brings no blurry effect
+ self.pulse_tensor[10, 10] = 1
+
+ def __getitem__(self, index):
+ if self.file_client is None:
+ self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
+
+ # -------------------------------- Load gt images -------------------------------- #
+ # Shape: (h, w, c); channel order: BGR; image range: [0, 1], float32.
+ gt_path = self.paths[index]
+ # avoid errors caused by high latency in reading files
+ retry = 3
+ while retry > 0:
+ try:
+ img_bytes = self.file_client.get(gt_path, 'gt')
+ except (IOError, OSError) as e:
+ logger = get_root_logger()
+ logger.warn(f'File client error: {e}, remaining retry times: {retry - 1}')
+ # change another file to read
+ index = random.randint(0, self.__len__())
+ gt_path = self.paths[index]
+ time.sleep(1) # sleep 1s for occasional server congestion
+ else:
+ break
+ finally:
+ retry -= 1
+ img_gt = imfrombytes(img_bytes, float32=True)
+
+ # -------------------- Do augmentation for training: flip, rotation -------------------- #
+ img_gt = augment(img_gt, self.opt['use_hflip'], self.opt['use_rot'])
+
+ # crop or pad to 400
+ # TODO: 400 is hard-coded. You may change it accordingly
+ h, w = img_gt.shape[0:2]
+ crop_pad_size = 400
+ # pad
+ if h < crop_pad_size or w < crop_pad_size:
+ pad_h = max(0, crop_pad_size - h)
+ pad_w = max(0, crop_pad_size - w)
+ img_gt = cv2.copyMakeBorder(img_gt, 0, pad_h, 0, pad_w, cv2.BORDER_REFLECT_101)
+ # crop
+ if img_gt.shape[0] > crop_pad_size or img_gt.shape[1] > crop_pad_size:
+ h, w = img_gt.shape[0:2]
+ # randomly choose top and left coordinates
+ top = random.randint(0, h - crop_pad_size)
+ left = random.randint(0, w - crop_pad_size)
+ img_gt = img_gt[top:top + crop_pad_size, left:left + crop_pad_size, ...]
+
+ # ------------------------ Generate kernels (used in the first degradation) ------------------------ #
+ kernel_size = random.choice(self.kernel_range)
+ if np.random.uniform() < self.opt['sinc_prob']:
+ # this sinc filter setting is for kernels ranging from [7, 21]
+ if kernel_size < 13:
+ omega_c = np.random.uniform(np.pi / 3, np.pi)
+ else:
+ omega_c = np.random.uniform(np.pi / 5, np.pi)
+ kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
+ else:
+ kernel = random_mixed_kernels(
+ self.kernel_list,
+ self.kernel_prob,
+ kernel_size,
+ self.blur_sigma,
+ self.blur_sigma, [-math.pi, math.pi],
+ self.betag_range,
+ self.betap_range,
+ noise_range=None)
+ # pad kernel
+ pad_size = (21 - kernel_size) // 2
+ kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size)))
+
+ # ------------------------ Generate kernels (used in the second degradation) ------------------------ #
+ kernel_size = random.choice(self.kernel_range)
+ if np.random.uniform() < self.opt['sinc_prob2']:
+ if kernel_size < 13:
+ omega_c = np.random.uniform(np.pi / 3, np.pi)
+ else:
+ omega_c = np.random.uniform(np.pi / 5, np.pi)
+ kernel2 = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
+ else:
+ kernel2 = random_mixed_kernels(
+ self.kernel_list2,
+ self.kernel_prob2,
+ kernel_size,
+ self.blur_sigma2,
+ self.blur_sigma2, [-math.pi, math.pi],
+ self.betag_range2,
+ self.betap_range2,
+ noise_range=None)
+
+ # pad kernel
+ pad_size = (21 - kernel_size) // 2
+ kernel2 = np.pad(kernel2, ((pad_size, pad_size), (pad_size, pad_size)))
+
+ # ------------------------------------- the final sinc kernel ------------------------------------- #
+ if np.random.uniform() < self.opt['final_sinc_prob']:
+ kernel_size = random.choice(self.kernel_range)
+ omega_c = np.random.uniform(np.pi / 3, np.pi)
+ sinc_kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=21)
+ sinc_kernel = torch.FloatTensor(sinc_kernel)
+ else:
+ sinc_kernel = self.pulse_tensor
+
+ # BGR to RGB, HWC to CHW, numpy to tensor
+ img_gt = img2tensor([img_gt], bgr2rgb=True, float32=True)[0]
+ kernel = torch.FloatTensor(kernel)
+ kernel2 = torch.FloatTensor(kernel2)
+
+ return_d = {'gt': img_gt, 'kernel1': kernel, 'kernel2': kernel2, 'sinc_kernel': sinc_kernel, 'gt_path': gt_path}
+ return return_d
+
+ def __len__(self):
+ return len(self.paths)