diff options
Diffstat (limited to 'r_basicsr/archs/stylegan2_arch.py')
-rw-r--r-- | r_basicsr/archs/stylegan2_arch.py | 799 |
1 files changed, 799 insertions, 0 deletions
diff --git a/r_basicsr/archs/stylegan2_arch.py b/r_basicsr/archs/stylegan2_arch.py new file mode 100644 index 0000000..e8d571e --- /dev/null +++ b/r_basicsr/archs/stylegan2_arch.py @@ -0,0 +1,799 @@ +import math
+import random
+import torch
+from torch import nn
+from torch.nn import functional as F
+
+from r_basicsr.ops.fused_act import FusedLeakyReLU, fused_leaky_relu
+from r_basicsr.ops.upfirdn2d import upfirdn2d
+from r_basicsr.utils.registry import ARCH_REGISTRY
+
+
+class NormStyleCode(nn.Module):
+
+ def forward(self, x):
+ """Normalize the style codes.
+
+ Args:
+ x (Tensor): Style codes with shape (b, c).
+
+ Returns:
+ Tensor: Normalized tensor.
+ """
+ return x * torch.rsqrt(torch.mean(x**2, dim=1, keepdim=True) + 1e-8)
+
+
+def make_resample_kernel(k):
+ """Make resampling kernel for UpFirDn.
+
+ Args:
+ k (list[int]): A list indicating the 1D resample kernel magnitude.
+
+ Returns:
+ Tensor: 2D resampled kernel.
+ """
+ k = torch.tensor(k, dtype=torch.float32)
+ if k.ndim == 1:
+ k = k[None, :] * k[:, None] # to 2D kernel, outer product
+ # normalize
+ k /= k.sum()
+ return k
+
+
+class UpFirDnUpsample(nn.Module):
+ """Upsample, FIR filter, and downsample (upsampole version).
+
+ References:
+ 1. https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.upfirdn.html # noqa: E501
+ 2. http://www.ece.northwestern.edu/local-apps/matlabhelp/toolbox/signal/upfirdn.html # noqa: E501
+
+ Args:
+ resample_kernel (list[int]): A list indicating the 1D resample kernel
+ magnitude.
+ factor (int): Upsampling scale factor. Default: 2.
+ """
+
+ def __init__(self, resample_kernel, factor=2):
+ super(UpFirDnUpsample, self).__init__()
+ self.kernel = make_resample_kernel(resample_kernel) * (factor**2)
+ self.factor = factor
+
+ pad = self.kernel.shape[0] - factor
+ self.pad = ((pad + 1) // 2 + factor - 1, pad // 2)
+
+ def forward(self, x):
+ out = upfirdn2d(x, self.kernel.type_as(x), up=self.factor, down=1, pad=self.pad)
+ return out
+
+ def __repr__(self):
+ return (f'{self.__class__.__name__}(factor={self.factor})')
+
+
+class UpFirDnDownsample(nn.Module):
+ """Upsample, FIR filter, and downsample (downsampole version).
+
+ Args:
+ resample_kernel (list[int]): A list indicating the 1D resample kernel
+ magnitude.
+ factor (int): Downsampling scale factor. Default: 2.
+ """
+
+ def __init__(self, resample_kernel, factor=2):
+ super(UpFirDnDownsample, self).__init__()
+ self.kernel = make_resample_kernel(resample_kernel)
+ self.factor = factor
+
+ pad = self.kernel.shape[0] - factor
+ self.pad = ((pad + 1) // 2, pad // 2)
+
+ def forward(self, x):
+ out = upfirdn2d(x, self.kernel.type_as(x), up=1, down=self.factor, pad=self.pad)
+ return out
+
+ def __repr__(self):
+ return (f'{self.__class__.__name__}(factor={self.factor})')
+
+
+class UpFirDnSmooth(nn.Module):
+ """Upsample, FIR filter, and downsample (smooth version).
+
+ Args:
+ resample_kernel (list[int]): A list indicating the 1D resample kernel
+ magnitude.
+ upsample_factor (int): Upsampling scale factor. Default: 1.
+ downsample_factor (int): Downsampling scale factor. Default: 1.
+ kernel_size (int): Kernel size: Default: 1.
+ """
+
+ def __init__(self, resample_kernel, upsample_factor=1, downsample_factor=1, kernel_size=1):
+ super(UpFirDnSmooth, self).__init__()
+ self.upsample_factor = upsample_factor
+ self.downsample_factor = downsample_factor
+ self.kernel = make_resample_kernel(resample_kernel)
+ if upsample_factor > 1:
+ self.kernel = self.kernel * (upsample_factor**2)
+
+ if upsample_factor > 1:
+ pad = (self.kernel.shape[0] - upsample_factor) - (kernel_size - 1)
+ self.pad = ((pad + 1) // 2 + upsample_factor - 1, pad // 2 + 1)
+ elif downsample_factor > 1:
+ pad = (self.kernel.shape[0] - downsample_factor) + (kernel_size - 1)
+ self.pad = ((pad + 1) // 2, pad // 2)
+ else:
+ raise NotImplementedError
+
+ def forward(self, x):
+ out = upfirdn2d(x, self.kernel.type_as(x), up=1, down=1, pad=self.pad)
+ return out
+
+ def __repr__(self):
+ return (f'{self.__class__.__name__}(upsample_factor={self.upsample_factor}'
+ f', downsample_factor={self.downsample_factor})')
+
+
+class EqualLinear(nn.Module):
+ """Equalized Linear as StyleGAN2.
+
+ Args:
+ in_channels (int): Size of each sample.
+ out_channels (int): Size of each output sample.
+ bias (bool): If set to ``False``, the layer will not learn an additive
+ bias. Default: ``True``.
+ bias_init_val (float): Bias initialized value. Default: 0.
+ lr_mul (float): Learning rate multiplier. Default: 1.
+ activation (None | str): The activation after ``linear`` operation.
+ Supported: 'fused_lrelu', None. Default: None.
+ """
+
+ def __init__(self, in_channels, out_channels, bias=True, bias_init_val=0, lr_mul=1, activation=None):
+ super(EqualLinear, self).__init__()
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+ self.lr_mul = lr_mul
+ self.activation = activation
+ if self.activation not in ['fused_lrelu', None]:
+ raise ValueError(f'Wrong activation value in EqualLinear: {activation}'
+ "Supported ones are: ['fused_lrelu', None].")
+ self.scale = (1 / math.sqrt(in_channels)) * lr_mul
+
+ self.weight = nn.Parameter(torch.randn(out_channels, in_channels).div_(lr_mul))
+ if bias:
+ self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val))
+ else:
+ self.register_parameter('bias', None)
+
+ def forward(self, x):
+ if self.bias is None:
+ bias = None
+ else:
+ bias = self.bias * self.lr_mul
+ if self.activation == 'fused_lrelu':
+ out = F.linear(x, self.weight * self.scale)
+ out = fused_leaky_relu(out, bias)
+ else:
+ out = F.linear(x, self.weight * self.scale, bias=bias)
+ return out
+
+ def __repr__(self):
+ return (f'{self.__class__.__name__}(in_channels={self.in_channels}, '
+ f'out_channels={self.out_channels}, bias={self.bias is not None})')
+
+
+class ModulatedConv2d(nn.Module):
+ """Modulated Conv2d used in StyleGAN2.
+
+ There is no bias in ModulatedConv2d.
+
+ Args:
+ in_channels (int): Channel number of the input.
+ out_channels (int): Channel number of the output.
+ kernel_size (int): Size of the convolving kernel.
+ num_style_feat (int): Channel number of style features.
+ demodulate (bool): Whether to demodulate in the conv layer.
+ Default: True.
+ sample_mode (str | None): Indicating 'upsample', 'downsample' or None.
+ Default: None.
+ resample_kernel (list[int]): A list indicating the 1D resample kernel
+ magnitude. Default: (1, 3, 3, 1).
+ eps (float): A value added to the denominator for numerical stability.
+ Default: 1e-8.
+ """
+
+ def __init__(self,
+ in_channels,
+ out_channels,
+ kernel_size,
+ num_style_feat,
+ demodulate=True,
+ sample_mode=None,
+ resample_kernel=(1, 3, 3, 1),
+ eps=1e-8):
+ super(ModulatedConv2d, self).__init__()
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+ self.kernel_size = kernel_size
+ self.demodulate = demodulate
+ self.sample_mode = sample_mode
+ self.eps = eps
+
+ if self.sample_mode == 'upsample':
+ self.smooth = UpFirDnSmooth(
+ resample_kernel, upsample_factor=2, downsample_factor=1, kernel_size=kernel_size)
+ elif self.sample_mode == 'downsample':
+ self.smooth = UpFirDnSmooth(
+ resample_kernel, upsample_factor=1, downsample_factor=2, kernel_size=kernel_size)
+ elif self.sample_mode is None:
+ pass
+ else:
+ raise ValueError(f'Wrong sample mode {self.sample_mode}, '
+ "supported ones are ['upsample', 'downsample', None].")
+
+ self.scale = 1 / math.sqrt(in_channels * kernel_size**2)
+ # modulation inside each modulated conv
+ self.modulation = EqualLinear(
+ num_style_feat, in_channels, bias=True, bias_init_val=1, lr_mul=1, activation=None)
+
+ self.weight = nn.Parameter(torch.randn(1, out_channels, in_channels, kernel_size, kernel_size))
+ self.padding = kernel_size // 2
+
+ def forward(self, x, style):
+ """Forward function.
+
+ Args:
+ x (Tensor): Tensor with shape (b, c, h, w).
+ style (Tensor): Tensor with shape (b, num_style_feat).
+
+ Returns:
+ Tensor: Modulated tensor after convolution.
+ """
+ b, c, h, w = x.shape # c = c_in
+ # weight modulation
+ style = self.modulation(style).view(b, 1, c, 1, 1)
+ # self.weight: (1, c_out, c_in, k, k); style: (b, 1, c, 1, 1)
+ weight = self.scale * self.weight * style # (b, c_out, c_in, k, k)
+
+ if self.demodulate:
+ demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps)
+ weight = weight * demod.view(b, self.out_channels, 1, 1, 1)
+
+ weight = weight.view(b * self.out_channels, c, self.kernel_size, self.kernel_size)
+
+ if self.sample_mode == 'upsample':
+ x = x.view(1, b * c, h, w)
+ weight = weight.view(b, self.out_channels, c, self.kernel_size, self.kernel_size)
+ weight = weight.transpose(1, 2).reshape(b * c, self.out_channels, self.kernel_size, self.kernel_size)
+ out = F.conv_transpose2d(x, weight, padding=0, stride=2, groups=b)
+ out = out.view(b, self.out_channels, *out.shape[2:4])
+ out = self.smooth(out)
+ elif self.sample_mode == 'downsample':
+ x = self.smooth(x)
+ x = x.view(1, b * c, *x.shape[2:4])
+ out = F.conv2d(x, weight, padding=0, stride=2, groups=b)
+ out = out.view(b, self.out_channels, *out.shape[2:4])
+ else:
+ x = x.view(1, b * c, h, w)
+ # weight: (b*c_out, c_in, k, k), groups=b
+ out = F.conv2d(x, weight, padding=self.padding, groups=b)
+ out = out.view(b, self.out_channels, *out.shape[2:4])
+
+ return out
+
+ def __repr__(self):
+ return (f'{self.__class__.__name__}(in_channels={self.in_channels}, '
+ f'out_channels={self.out_channels}, '
+ f'kernel_size={self.kernel_size}, '
+ f'demodulate={self.demodulate}, sample_mode={self.sample_mode})')
+
+
+class StyleConv(nn.Module):
+ """Style conv.
+
+ Args:
+ in_channels (int): Channel number of the input.
+ out_channels (int): Channel number of the output.
+ kernel_size (int): Size of the convolving kernel.
+ num_style_feat (int): Channel number of style features.
+ demodulate (bool): Whether demodulate in the conv layer. Default: True.
+ sample_mode (str | None): Indicating 'upsample', 'downsample' or None.
+ Default: None.
+ resample_kernel (list[int]): A list indicating the 1D resample kernel
+ magnitude. Default: (1, 3, 3, 1).
+ """
+
+ def __init__(self,
+ in_channels,
+ out_channels,
+ kernel_size,
+ num_style_feat,
+ demodulate=True,
+ sample_mode=None,
+ resample_kernel=(1, 3, 3, 1)):
+ super(StyleConv, self).__init__()
+ self.modulated_conv = ModulatedConv2d(
+ in_channels,
+ out_channels,
+ kernel_size,
+ num_style_feat,
+ demodulate=demodulate,
+ sample_mode=sample_mode,
+ resample_kernel=resample_kernel)
+ self.weight = nn.Parameter(torch.zeros(1)) # for noise injection
+ self.activate = FusedLeakyReLU(out_channels)
+
+ def forward(self, x, style, noise=None):
+ # modulate
+ out = self.modulated_conv(x, style)
+ # noise injection
+ if noise is None:
+ b, _, h, w = out.shape
+ noise = out.new_empty(b, 1, h, w).normal_()
+ out = out + self.weight * noise
+ # activation (with bias)
+ out = self.activate(out)
+ return out
+
+
+class ToRGB(nn.Module):
+ """To RGB from features.
+
+ Args:
+ in_channels (int): Channel number of input.
+ num_style_feat (int): Channel number of style features.
+ upsample (bool): Whether to upsample. Default: True.
+ resample_kernel (list[int]): A list indicating the 1D resample kernel
+ magnitude. Default: (1, 3, 3, 1).
+ """
+
+ def __init__(self, in_channels, num_style_feat, upsample=True, resample_kernel=(1, 3, 3, 1)):
+ super(ToRGB, self).__init__()
+ if upsample:
+ self.upsample = UpFirDnUpsample(resample_kernel, factor=2)
+ else:
+ self.upsample = None
+ self.modulated_conv = ModulatedConv2d(
+ in_channels, 3, kernel_size=1, num_style_feat=num_style_feat, demodulate=False, sample_mode=None)
+ self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
+
+ def forward(self, x, style, skip=None):
+ """Forward function.
+
+ Args:
+ x (Tensor): Feature tensor with shape (b, c, h, w).
+ style (Tensor): Tensor with shape (b, num_style_feat).
+ skip (Tensor): Base/skip tensor. Default: None.
+
+ Returns:
+ Tensor: RGB images.
+ """
+ out = self.modulated_conv(x, style)
+ out = out + self.bias
+ if skip is not None:
+ if self.upsample:
+ skip = self.upsample(skip)
+ out = out + skip
+ return out
+
+
+class ConstantInput(nn.Module):
+ """Constant input.
+
+ Args:
+ num_channel (int): Channel number of constant input.
+ size (int): Spatial size of constant input.
+ """
+
+ def __init__(self, num_channel, size):
+ super(ConstantInput, self).__init__()
+ self.weight = nn.Parameter(torch.randn(1, num_channel, size, size))
+
+ def forward(self, batch):
+ out = self.weight.repeat(batch, 1, 1, 1)
+ return out
+
+
+@ARCH_REGISTRY.register()
+class StyleGAN2Generator(nn.Module):
+ """StyleGAN2 Generator.
+
+ Args:
+ out_size (int): The spatial size of outputs.
+ num_style_feat (int): Channel number of style features. Default: 512.
+ num_mlp (int): Layer number of MLP style layers. Default: 8.
+ channel_multiplier (int): Channel multiplier for large networks of
+ StyleGAN2. Default: 2.
+ resample_kernel (list[int]): A list indicating the 1D resample kernel
+ magnitude. A cross production will be applied to extent 1D resample
+ kernel to 2D resample kernel. Default: (1, 3, 3, 1).
+ lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01.
+ narrow (float): Narrow ratio for channels. Default: 1.0.
+ """
+
+ def __init__(self,
+ out_size,
+ num_style_feat=512,
+ num_mlp=8,
+ channel_multiplier=2,
+ resample_kernel=(1, 3, 3, 1),
+ lr_mlp=0.01,
+ narrow=1):
+ super(StyleGAN2Generator, self).__init__()
+ # Style MLP layers
+ self.num_style_feat = num_style_feat
+ style_mlp_layers = [NormStyleCode()]
+ for i in range(num_mlp):
+ style_mlp_layers.append(
+ EqualLinear(
+ num_style_feat, num_style_feat, bias=True, bias_init_val=0, lr_mul=lr_mlp,
+ activation='fused_lrelu'))
+ self.style_mlp = nn.Sequential(*style_mlp_layers)
+
+ channels = {
+ '4': int(512 * narrow),
+ '8': int(512 * narrow),
+ '16': int(512 * narrow),
+ '32': int(512 * narrow),
+ '64': int(256 * channel_multiplier * narrow),
+ '128': int(128 * channel_multiplier * narrow),
+ '256': int(64 * channel_multiplier * narrow),
+ '512': int(32 * channel_multiplier * narrow),
+ '1024': int(16 * channel_multiplier * narrow)
+ }
+ self.channels = channels
+
+ self.constant_input = ConstantInput(channels['4'], size=4)
+ self.style_conv1 = StyleConv(
+ channels['4'],
+ channels['4'],
+ kernel_size=3,
+ num_style_feat=num_style_feat,
+ demodulate=True,
+ sample_mode=None,
+ resample_kernel=resample_kernel)
+ self.to_rgb1 = ToRGB(channels['4'], num_style_feat, upsample=False, resample_kernel=resample_kernel)
+
+ self.log_size = int(math.log(out_size, 2))
+ self.num_layers = (self.log_size - 2) * 2 + 1
+ self.num_latent = self.log_size * 2 - 2
+
+ self.style_convs = nn.ModuleList()
+ self.to_rgbs = nn.ModuleList()
+ self.noises = nn.Module()
+
+ in_channels = channels['4']
+ # noise
+ for layer_idx in range(self.num_layers):
+ resolution = 2**((layer_idx + 5) // 2)
+ shape = [1, 1, resolution, resolution]
+ self.noises.register_buffer(f'noise{layer_idx}', torch.randn(*shape))
+ # style convs and to_rgbs
+ for i in range(3, self.log_size + 1):
+ out_channels = channels[f'{2**i}']
+ self.style_convs.append(
+ StyleConv(
+ in_channels,
+ out_channels,
+ kernel_size=3,
+ num_style_feat=num_style_feat,
+ demodulate=True,
+ sample_mode='upsample',
+ resample_kernel=resample_kernel,
+ ))
+ self.style_convs.append(
+ StyleConv(
+ out_channels,
+ out_channels,
+ kernel_size=3,
+ num_style_feat=num_style_feat,
+ demodulate=True,
+ sample_mode=None,
+ resample_kernel=resample_kernel))
+ self.to_rgbs.append(ToRGB(out_channels, num_style_feat, upsample=True, resample_kernel=resample_kernel))
+ in_channels = out_channels
+
+ def make_noise(self):
+ """Make noise for noise injection."""
+ device = self.constant_input.weight.device
+ noises = [torch.randn(1, 1, 4, 4, device=device)]
+
+ for i in range(3, self.log_size + 1):
+ for _ in range(2):
+ noises.append(torch.randn(1, 1, 2**i, 2**i, device=device))
+
+ return noises
+
+ def get_latent(self, x):
+ return self.style_mlp(x)
+
+ def mean_latent(self, num_latent):
+ latent_in = torch.randn(num_latent, self.num_style_feat, device=self.constant_input.weight.device)
+ latent = self.style_mlp(latent_in).mean(0, keepdim=True)
+ return latent
+
+ def forward(self,
+ styles,
+ input_is_latent=False,
+ noise=None,
+ randomize_noise=True,
+ truncation=1,
+ truncation_latent=None,
+ inject_index=None,
+ return_latents=False):
+ """Forward function for StyleGAN2Generator.
+
+ Args:
+ styles (list[Tensor]): Sample codes of styles.
+ input_is_latent (bool): Whether input is latent style.
+ Default: False.
+ noise (Tensor | None): Input noise or None. Default: None.
+ randomize_noise (bool): Randomize noise, used when 'noise' is
+ False. Default: True.
+ truncation (float): TODO. Default: 1.
+ truncation_latent (Tensor | None): TODO. Default: None.
+ inject_index (int | None): The injection index for mixing noise.
+ Default: None.
+ return_latents (bool): Whether to return style latents.
+ Default: False.
+ """
+ # style codes -> latents with Style MLP layer
+ if not input_is_latent:
+ styles = [self.style_mlp(s) for s in styles]
+ # noises
+ if noise is None:
+ if randomize_noise:
+ noise = [None] * self.num_layers # for each style conv layer
+ else: # use the stored noise
+ noise = [getattr(self.noises, f'noise{i}') for i in range(self.num_layers)]
+ # style truncation
+ if truncation < 1:
+ style_truncation = []
+ for style in styles:
+ style_truncation.append(truncation_latent + truncation * (style - truncation_latent))
+ styles = style_truncation
+ # get style latent with injection
+ if len(styles) == 1:
+ inject_index = self.num_latent
+
+ if styles[0].ndim < 3:
+ # repeat latent code for all the layers
+ latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
+ else: # used for encoder with different latent code for each layer
+ latent = styles[0]
+ elif len(styles) == 2: # mixing noises
+ if inject_index is None:
+ inject_index = random.randint(1, self.num_latent - 1)
+ latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
+ latent2 = styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
+ latent = torch.cat([latent1, latent2], 1)
+
+ # main generation
+ out = self.constant_input(latent.shape[0])
+ out = self.style_conv1(out, latent[:, 0], noise=noise[0])
+ skip = self.to_rgb1(out, latent[:, 1])
+
+ i = 1
+ for conv1, conv2, noise1, noise2, to_rgb in zip(self.style_convs[::2], self.style_convs[1::2], noise[1::2],
+ noise[2::2], self.to_rgbs):
+ out = conv1(out, latent[:, i], noise=noise1)
+ out = conv2(out, latent[:, i + 1], noise=noise2)
+ skip = to_rgb(out, latent[:, i + 2], skip)
+ i += 2
+
+ image = skip
+
+ if return_latents:
+ return image, latent
+ else:
+ return image, None
+
+
+class ScaledLeakyReLU(nn.Module):
+ """Scaled LeakyReLU.
+
+ Args:
+ negative_slope (float): Negative slope. Default: 0.2.
+ """
+
+ def __init__(self, negative_slope=0.2):
+ super(ScaledLeakyReLU, self).__init__()
+ self.negative_slope = negative_slope
+
+ def forward(self, x):
+ out = F.leaky_relu(x, negative_slope=self.negative_slope)
+ return out * math.sqrt(2)
+
+
+class EqualConv2d(nn.Module):
+ """Equalized Linear as StyleGAN2.
+
+ Args:
+ in_channels (int): Channel number of the input.
+ out_channels (int): Channel number of the output.
+ kernel_size (int): Size of the convolving kernel.
+ stride (int): Stride of the convolution. Default: 1
+ padding (int): Zero-padding added to both sides of the input.
+ Default: 0.
+ bias (bool): If ``True``, adds a learnable bias to the output.
+ Default: ``True``.
+ bias_init_val (float): Bias initialized value. Default: 0.
+ """
+
+ def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, bias=True, bias_init_val=0):
+ super(EqualConv2d, self).__init__()
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+ self.kernel_size = kernel_size
+ self.stride = stride
+ self.padding = padding
+ self.scale = 1 / math.sqrt(in_channels * kernel_size**2)
+
+ self.weight = nn.Parameter(torch.randn(out_channels, in_channels, kernel_size, kernel_size))
+ if bias:
+ self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val))
+ else:
+ self.register_parameter('bias', None)
+
+ def forward(self, x):
+ out = F.conv2d(
+ x,
+ self.weight * self.scale,
+ bias=self.bias,
+ stride=self.stride,
+ padding=self.padding,
+ )
+
+ return out
+
+ def __repr__(self):
+ return (f'{self.__class__.__name__}(in_channels={self.in_channels}, '
+ f'out_channels={self.out_channels}, '
+ f'kernel_size={self.kernel_size},'
+ f' stride={self.stride}, padding={self.padding}, '
+ f'bias={self.bias is not None})')
+
+
+class ConvLayer(nn.Sequential):
+ """Conv Layer used in StyleGAN2 Discriminator.
+
+ Args:
+ in_channels (int): Channel number of the input.
+ out_channels (int): Channel number of the output.
+ kernel_size (int): Kernel size.
+ downsample (bool): Whether downsample by a factor of 2.
+ Default: False.
+ resample_kernel (list[int]): A list indicating the 1D resample
+ kernel magnitude. A cross production will be applied to
+ extent 1D resample kernel to 2D resample kernel.
+ Default: (1, 3, 3, 1).
+ bias (bool): Whether with bias. Default: True.
+ activate (bool): Whether use activateion. Default: True.
+ """
+
+ def __init__(self,
+ in_channels,
+ out_channels,
+ kernel_size,
+ downsample=False,
+ resample_kernel=(1, 3, 3, 1),
+ bias=True,
+ activate=True):
+ layers = []
+ # downsample
+ if downsample:
+ layers.append(
+ UpFirDnSmooth(resample_kernel, upsample_factor=1, downsample_factor=2, kernel_size=kernel_size))
+ stride = 2
+ self.padding = 0
+ else:
+ stride = 1
+ self.padding = kernel_size // 2
+ # conv
+ layers.append(
+ EqualConv2d(
+ in_channels, out_channels, kernel_size, stride=stride, padding=self.padding, bias=bias
+ and not activate))
+ # activation
+ if activate:
+ if bias:
+ layers.append(FusedLeakyReLU(out_channels))
+ else:
+ layers.append(ScaledLeakyReLU(0.2))
+
+ super(ConvLayer, self).__init__(*layers)
+
+
+class ResBlock(nn.Module):
+ """Residual block used in StyleGAN2 Discriminator.
+
+ Args:
+ in_channels (int): Channel number of the input.
+ out_channels (int): Channel number of the output.
+ resample_kernel (list[int]): A list indicating the 1D resample
+ kernel magnitude. A cross production will be applied to
+ extent 1D resample kernel to 2D resample kernel.
+ Default: (1, 3, 3, 1).
+ """
+
+ def __init__(self, in_channels, out_channels, resample_kernel=(1, 3, 3, 1)):
+ super(ResBlock, self).__init__()
+
+ self.conv1 = ConvLayer(in_channels, in_channels, 3, bias=True, activate=True)
+ self.conv2 = ConvLayer(
+ in_channels, out_channels, 3, downsample=True, resample_kernel=resample_kernel, bias=True, activate=True)
+ self.skip = ConvLayer(
+ in_channels, out_channels, 1, downsample=True, resample_kernel=resample_kernel, bias=False, activate=False)
+
+ def forward(self, x):
+ out = self.conv1(x)
+ out = self.conv2(out)
+ skip = self.skip(x)
+ out = (out + skip) / math.sqrt(2)
+ return out
+
+
+@ARCH_REGISTRY.register()
+class StyleGAN2Discriminator(nn.Module):
+ """StyleGAN2 Discriminator.
+
+ Args:
+ out_size (int): The spatial size of outputs.
+ channel_multiplier (int): Channel multiplier for large networks of
+ StyleGAN2. Default: 2.
+ resample_kernel (list[int]): A list indicating the 1D resample kernel
+ magnitude. A cross production will be applied to extent 1D resample
+ kernel to 2D resample kernel. Default: (1, 3, 3, 1).
+ stddev_group (int): For group stddev statistics. Default: 4.
+ narrow (float): Narrow ratio for channels. Default: 1.0.
+ """
+
+ def __init__(self, out_size, channel_multiplier=2, resample_kernel=(1, 3, 3, 1), stddev_group=4, narrow=1):
+ super(StyleGAN2Discriminator, self).__init__()
+
+ channels = {
+ '4': int(512 * narrow),
+ '8': int(512 * narrow),
+ '16': int(512 * narrow),
+ '32': int(512 * narrow),
+ '64': int(256 * channel_multiplier * narrow),
+ '128': int(128 * channel_multiplier * narrow),
+ '256': int(64 * channel_multiplier * narrow),
+ '512': int(32 * channel_multiplier * narrow),
+ '1024': int(16 * channel_multiplier * narrow)
+ }
+
+ log_size = int(math.log(out_size, 2))
+
+ conv_body = [ConvLayer(3, channels[f'{out_size}'], 1, bias=True, activate=True)]
+
+ in_channels = channels[f'{out_size}']
+ for i in range(log_size, 2, -1):
+ out_channels = channels[f'{2**(i - 1)}']
+ conv_body.append(ResBlock(in_channels, out_channels, resample_kernel))
+ in_channels = out_channels
+ self.conv_body = nn.Sequential(*conv_body)
+
+ self.final_conv = ConvLayer(in_channels + 1, channels['4'], 3, bias=True, activate=True)
+ self.final_linear = nn.Sequential(
+ EqualLinear(
+ channels['4'] * 4 * 4, channels['4'], bias=True, bias_init_val=0, lr_mul=1, activation='fused_lrelu'),
+ EqualLinear(channels['4'], 1, bias=True, bias_init_val=0, lr_mul=1, activation=None),
+ )
+ self.stddev_group = stddev_group
+ self.stddev_feat = 1
+
+ def forward(self, x):
+ out = self.conv_body(x)
+
+ b, c, h, w = out.shape
+ # concatenate a group stddev statistics to out
+ group = min(b, self.stddev_group) # Minibatch must be divisible by (or smaller than) group_size
+ stddev = out.view(group, -1, self.stddev_feat, c // self.stddev_feat, h, w)
+ stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8)
+ stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2)
+ stddev = stddev.repeat(group, 1, h, w)
+ out = torch.cat([out, stddev], 1)
+
+ out = self.final_conv(out)
+ out = out.view(b, -1)
+ out = self.final_linear(out)
+
+ return out
|