summaryrefslogtreecommitdiffstats
path: root/r_basicsr/archs/srvgg_arch.py
diff options
context:
space:
mode:
Diffstat (limited to 'r_basicsr/archs/srvgg_arch.py')
-rw-r--r--r_basicsr/archs/srvgg_arch.py70
1 files changed, 70 insertions, 0 deletions
diff --git a/r_basicsr/archs/srvgg_arch.py b/r_basicsr/archs/srvgg_arch.py
new file mode 100644
index 0000000..f0e51e4
--- /dev/null
+++ b/r_basicsr/archs/srvgg_arch.py
@@ -0,0 +1,70 @@
+from torch import nn as nn
+from torch.nn import functional as F
+
+from r_basicsr.utils.registry import ARCH_REGISTRY
+
+
+@ARCH_REGISTRY.register(suffix='basicsr')
+class SRVGGNetCompact(nn.Module):
+ """A compact VGG-style network structure for super-resolution.
+
+ It is a compact network structure, which performs upsampling in the last layer and no convolution is
+ conducted on the HR feature space.
+
+ Args:
+ num_in_ch (int): Channel number of inputs. Default: 3.
+ num_out_ch (int): Channel number of outputs. Default: 3.
+ num_feat (int): Channel number of intermediate features. Default: 64.
+ num_conv (int): Number of convolution layers in the body network. Default: 16.
+ upscale (int): Upsampling factor. Default: 4.
+ act_type (str): Activation type, options: 'relu', 'prelu', 'leakyrelu'. Default: prelu.
+ """
+
+ def __init__(self, num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu'):
+ super(SRVGGNetCompact, self).__init__()
+ self.num_in_ch = num_in_ch
+ self.num_out_ch = num_out_ch
+ self.num_feat = num_feat
+ self.num_conv = num_conv
+ self.upscale = upscale
+ self.act_type = act_type
+
+ self.body = nn.ModuleList()
+ # the first conv
+ self.body.append(nn.Conv2d(num_in_ch, num_feat, 3, 1, 1))
+ # the first activation
+ if act_type == 'relu':
+ activation = nn.ReLU(inplace=True)
+ elif act_type == 'prelu':
+ activation = nn.PReLU(num_parameters=num_feat)
+ elif act_type == 'leakyrelu':
+ activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
+ self.body.append(activation)
+
+ # the body structure
+ for _ in range(num_conv):
+ self.body.append(nn.Conv2d(num_feat, num_feat, 3, 1, 1))
+ # activation
+ if act_type == 'relu':
+ activation = nn.ReLU(inplace=True)
+ elif act_type == 'prelu':
+ activation = nn.PReLU(num_parameters=num_feat)
+ elif act_type == 'leakyrelu':
+ activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
+ self.body.append(activation)
+
+ # the last conv
+ self.body.append(nn.Conv2d(num_feat, num_out_ch * upscale * upscale, 3, 1, 1))
+ # upsample
+ self.upsampler = nn.PixelShuffle(upscale)
+
+ def forward(self, x):
+ out = x
+ for i in range(0, len(self.body)):
+ out = self.body[i](out)
+
+ out = self.upsampler(out)
+ # add the nearest upsampled image, so that the network learns the residual
+ base = F.interpolate(x, scale_factor=self.upscale, mode='nearest')
+ out += base
+ return out