diff options
Diffstat (limited to 'r_basicsr/archs/ridnet_arch.py')
-rw-r--r-- | r_basicsr/archs/ridnet_arch.py | 184 |
1 files changed, 184 insertions, 0 deletions
diff --git a/r_basicsr/archs/ridnet_arch.py b/r_basicsr/archs/ridnet_arch.py new file mode 100644 index 0000000..5a9349f --- /dev/null +++ b/r_basicsr/archs/ridnet_arch.py @@ -0,0 +1,184 @@ +import torch
+import torch.nn as nn
+
+from r_basicsr.utils.registry import ARCH_REGISTRY
+from .arch_util import ResidualBlockNoBN, make_layer
+
+
+class MeanShift(nn.Conv2d):
+ """ Data normalization with mean and std.
+
+ Args:
+ rgb_range (int): Maximum value of RGB.
+ rgb_mean (list[float]): Mean for RGB channels.
+ rgb_std (list[float]): Std for RGB channels.
+ sign (int): For subtraction, sign is -1, for addition, sign is 1.
+ Default: -1.
+ requires_grad (bool): Whether to update the self.weight and self.bias.
+ Default: True.
+ """
+
+ def __init__(self, rgb_range, rgb_mean, rgb_std, sign=-1, requires_grad=True):
+ super(MeanShift, self).__init__(3, 3, kernel_size=1)
+ std = torch.Tensor(rgb_std)
+ self.weight.data = torch.eye(3).view(3, 3, 1, 1)
+ self.weight.data.div_(std.view(3, 1, 1, 1))
+ self.bias.data = sign * rgb_range * torch.Tensor(rgb_mean)
+ self.bias.data.div_(std)
+ self.requires_grad = requires_grad
+
+
+class EResidualBlockNoBN(nn.Module):
+ """Enhanced Residual block without BN.
+
+ There are three convolution layers in residual branch.
+
+ It has a style of:
+ ---Conv-ReLU-Conv-ReLU-Conv-+-ReLU-
+ |__________________________|
+ """
+
+ def __init__(self, in_channels, out_channels):
+ super(EResidualBlockNoBN, self).__init__()
+
+ self.body = nn.Sequential(
+ nn.Conv2d(in_channels, out_channels, 3, 1, 1),
+ nn.ReLU(inplace=True),
+ nn.Conv2d(out_channels, out_channels, 3, 1, 1),
+ nn.ReLU(inplace=True),
+ nn.Conv2d(out_channels, out_channels, 1, 1, 0),
+ )
+ self.relu = nn.ReLU(inplace=True)
+
+ def forward(self, x):
+ out = self.body(x)
+ out = self.relu(out + x)
+ return out
+
+
+class MergeRun(nn.Module):
+ """ Merge-and-run unit.
+
+ This unit contains two branches with different dilated convolutions,
+ followed by a convolution to process the concatenated features.
+
+ Paper: Real Image Denoising with Feature Attention
+ Ref git repo: https://github.com/saeed-anwar/RIDNet
+ """
+
+ def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1):
+ super(MergeRun, self).__init__()
+
+ self.dilation1 = nn.Sequential(
+ nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding), nn.ReLU(inplace=True),
+ nn.Conv2d(out_channels, out_channels, kernel_size, stride, 2, 2), nn.ReLU(inplace=True))
+ self.dilation2 = nn.Sequential(
+ nn.Conv2d(in_channels, out_channels, kernel_size, stride, 3, 3), nn.ReLU(inplace=True),
+ nn.Conv2d(out_channels, out_channels, kernel_size, stride, 4, 4), nn.ReLU(inplace=True))
+
+ self.aggregation = nn.Sequential(
+ nn.Conv2d(out_channels * 2, out_channels, kernel_size, stride, padding), nn.ReLU(inplace=True))
+
+ def forward(self, x):
+ dilation1 = self.dilation1(x)
+ dilation2 = self.dilation2(x)
+ out = torch.cat([dilation1, dilation2], dim=1)
+ out = self.aggregation(out)
+ out = out + x
+ return out
+
+
+class ChannelAttention(nn.Module):
+ """Channel attention.
+
+ Args:
+ num_feat (int): Channel number of intermediate features.
+ squeeze_factor (int): Channel squeeze factor. Default:
+ """
+
+ def __init__(self, mid_channels, squeeze_factor=16):
+ super(ChannelAttention, self).__init__()
+ self.attention = nn.Sequential(
+ nn.AdaptiveAvgPool2d(1), nn.Conv2d(mid_channels, mid_channels // squeeze_factor, 1, padding=0),
+ nn.ReLU(inplace=True), nn.Conv2d(mid_channels // squeeze_factor, mid_channels, 1, padding=0), nn.Sigmoid())
+
+ def forward(self, x):
+ y = self.attention(x)
+ return x * y
+
+
+class EAM(nn.Module):
+ """Enhancement attention modules (EAM) in RIDNet.
+
+ This module contains a merge-and-run unit, a residual block,
+ an enhanced residual block and a feature attention unit.
+
+ Attributes:
+ merge: The merge-and-run unit.
+ block1: The residual block.
+ block2: The enhanced residual block.
+ ca: The feature/channel attention unit.
+ """
+
+ def __init__(self, in_channels, mid_channels, out_channels):
+ super(EAM, self).__init__()
+
+ self.merge = MergeRun(in_channels, mid_channels)
+ self.block1 = ResidualBlockNoBN(mid_channels)
+ self.block2 = EResidualBlockNoBN(mid_channels, out_channels)
+ self.ca = ChannelAttention(out_channels)
+ # The residual block in the paper contains a relu after addition.
+ self.relu = nn.ReLU(inplace=True)
+
+ def forward(self, x):
+ out = self.merge(x)
+ out = self.relu(self.block1(out))
+ out = self.block2(out)
+ out = self.ca(out)
+ return out
+
+
+@ARCH_REGISTRY.register()
+class RIDNet(nn.Module):
+ """RIDNet: Real Image Denoising with Feature Attention.
+
+ Ref git repo: https://github.com/saeed-anwar/RIDNet
+
+ Args:
+ in_channels (int): Channel number of inputs.
+ mid_channels (int): Channel number of EAM modules.
+ Default: 64.
+ out_channels (int): Channel number of outputs.
+ num_block (int): Number of EAM. Default: 4.
+ img_range (float): Image range. Default: 255.
+ rgb_mean (tuple[float]): Image mean in RGB orders.
+ Default: (0.4488, 0.4371, 0.4040), calculated from DIV2K dataset.
+ """
+
+ def __init__(self,
+ in_channels,
+ mid_channels,
+ out_channels,
+ num_block=4,
+ img_range=255.,
+ rgb_mean=(0.4488, 0.4371, 0.4040),
+ rgb_std=(1.0, 1.0, 1.0)):
+ super(RIDNet, self).__init__()
+
+ self.sub_mean = MeanShift(img_range, rgb_mean, rgb_std)
+ self.add_mean = MeanShift(img_range, rgb_mean, rgb_std, 1)
+
+ self.head = nn.Conv2d(in_channels, mid_channels, 3, 1, 1)
+ self.body = make_layer(
+ EAM, num_block, in_channels=mid_channels, mid_channels=mid_channels, out_channels=mid_channels)
+ self.tail = nn.Conv2d(mid_channels, out_channels, 3, 1, 1)
+
+ self.relu = nn.ReLU(inplace=True)
+
+ def forward(self, x):
+ res = self.sub_mean(x)
+ res = self.tail(self.body(self.relu(self.head(res))))
+ res = self.add_mean(res)
+
+ out = x + res
+ return out
|