diff options
Diffstat (limited to 'r_basicsr/archs/rcan_arch.py')
-rw-r--r-- | r_basicsr/archs/rcan_arch.py | 135 |
1 files changed, 135 insertions, 0 deletions
diff --git a/r_basicsr/archs/rcan_arch.py b/r_basicsr/archs/rcan_arch.py new file mode 100644 index 0000000..78f917e --- /dev/null +++ b/r_basicsr/archs/rcan_arch.py @@ -0,0 +1,135 @@ +import torch
+from torch import nn as nn
+
+from r_basicsr.utils.registry import ARCH_REGISTRY
+from .arch_util import Upsample, make_layer
+
+
+class ChannelAttention(nn.Module):
+ """Channel attention used in RCAN.
+
+ Args:
+ num_feat (int): Channel number of intermediate features.
+ squeeze_factor (int): Channel squeeze factor. Default: 16.
+ """
+
+ def __init__(self, num_feat, squeeze_factor=16):
+ super(ChannelAttention, self).__init__()
+ self.attention = nn.Sequential(
+ nn.AdaptiveAvgPool2d(1), nn.Conv2d(num_feat, num_feat // squeeze_factor, 1, padding=0),
+ nn.ReLU(inplace=True), nn.Conv2d(num_feat // squeeze_factor, num_feat, 1, padding=0), nn.Sigmoid())
+
+ def forward(self, x):
+ y = self.attention(x)
+ return x * y
+
+
+class RCAB(nn.Module):
+ """Residual Channel Attention Block (RCAB) used in RCAN.
+
+ Args:
+ num_feat (int): Channel number of intermediate features.
+ squeeze_factor (int): Channel squeeze factor. Default: 16.
+ res_scale (float): Scale the residual. Default: 1.
+ """
+
+ def __init__(self, num_feat, squeeze_factor=16, res_scale=1):
+ super(RCAB, self).__init__()
+ self.res_scale = res_scale
+
+ self.rcab = nn.Sequential(
+ nn.Conv2d(num_feat, num_feat, 3, 1, 1), nn.ReLU(True), nn.Conv2d(num_feat, num_feat, 3, 1, 1),
+ ChannelAttention(num_feat, squeeze_factor))
+
+ def forward(self, x):
+ res = self.rcab(x) * self.res_scale
+ return res + x
+
+
+class ResidualGroup(nn.Module):
+ """Residual Group of RCAB.
+
+ Args:
+ num_feat (int): Channel number of intermediate features.
+ num_block (int): Block number in the body network.
+ squeeze_factor (int): Channel squeeze factor. Default: 16.
+ res_scale (float): Scale the residual. Default: 1.
+ """
+
+ def __init__(self, num_feat, num_block, squeeze_factor=16, res_scale=1):
+ super(ResidualGroup, self).__init__()
+
+ self.residual_group = make_layer(
+ RCAB, num_block, num_feat=num_feat, squeeze_factor=squeeze_factor, res_scale=res_scale)
+ self.conv = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
+
+ def forward(self, x):
+ res = self.conv(self.residual_group(x))
+ return res + x
+
+
+@ARCH_REGISTRY.register()
+class RCAN(nn.Module):
+ """Residual Channel Attention Networks.
+
+ Paper: Image Super-Resolution Using Very Deep Residual Channel Attention
+ Networks
+ Ref git repo: https://github.com/yulunzhang/RCAN.
+
+ Args:
+ num_in_ch (int): Channel number of inputs.
+ num_out_ch (int): Channel number of outputs.
+ num_feat (int): Channel number of intermediate features.
+ Default: 64.
+ num_group (int): Number of ResidualGroup. Default: 10.
+ num_block (int): Number of RCAB in ResidualGroup. Default: 16.
+ squeeze_factor (int): Channel squeeze factor. Default: 16.
+ upscale (int): Upsampling factor. Support 2^n and 3.
+ Default: 4.
+ res_scale (float): Used to scale the residual in residual block.
+ Default: 1.
+ img_range (float): Image range. Default: 255.
+ rgb_mean (tuple[float]): Image mean in RGB orders.
+ Default: (0.4488, 0.4371, 0.4040), calculated from DIV2K dataset.
+ """
+
+ def __init__(self,
+ num_in_ch,
+ num_out_ch,
+ num_feat=64,
+ num_group=10,
+ num_block=16,
+ squeeze_factor=16,
+ upscale=4,
+ res_scale=1,
+ img_range=255.,
+ rgb_mean=(0.4488, 0.4371, 0.4040)):
+ super(RCAN, self).__init__()
+
+ self.img_range = img_range
+ self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
+
+ self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
+ self.body = make_layer(
+ ResidualGroup,
+ num_group,
+ num_feat=num_feat,
+ num_block=num_block,
+ squeeze_factor=squeeze_factor,
+ res_scale=res_scale)
+ self.conv_after_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
+ self.upsample = Upsample(upscale, num_feat)
+ self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
+
+ def forward(self, x):
+ self.mean = self.mean.type_as(x)
+
+ x = (x - self.mean) * self.img_range
+ x = self.conv_first(x)
+ res = self.conv_after_body(self.body(x))
+ res += x
+
+ x = self.conv_last(self.upsample(res))
+ x = x / self.img_range + self.mean
+
+ return x
|