summaryrefslogtreecommitdiffstats
path: root/r_basicsr/archs/inception.py
diff options
context:
space:
mode:
Diffstat (limited to 'r_basicsr/archs/inception.py')
-rw-r--r--r_basicsr/archs/inception.py307
1 files changed, 307 insertions, 0 deletions
diff --git a/r_basicsr/archs/inception.py b/r_basicsr/archs/inception.py
new file mode 100644
index 0000000..7db2b42
--- /dev/null
+++ b/r_basicsr/archs/inception.py
@@ -0,0 +1,307 @@
+# Modified from https://github.com/mseitzer/pytorch-fid/blob/master/pytorch_fid/inception.py # noqa: E501
+# For FID metric
+
+import os
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from torch.utils.model_zoo import load_url
+from torchvision import models
+
+# Inception weights ported to Pytorch from
+# http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz
+FID_WEIGHTS_URL = 'https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth' # noqa: E501
+LOCAL_FID_WEIGHTS = 'experiments/pretrained_models/pt_inception-2015-12-05-6726825d.pth' # noqa: E501
+
+
+class InceptionV3(nn.Module):
+ """Pretrained InceptionV3 network returning feature maps"""
+
+ # Index of default block of inception to return,
+ # corresponds to output of final average pooling
+ DEFAULT_BLOCK_INDEX = 3
+
+ # Maps feature dimensionality to their output blocks indices
+ BLOCK_INDEX_BY_DIM = {
+ 64: 0, # First max pooling features
+ 192: 1, # Second max pooling features
+ 768: 2, # Pre-aux classifier features
+ 2048: 3 # Final average pooling features
+ }
+
+ def __init__(self,
+ output_blocks=(DEFAULT_BLOCK_INDEX),
+ resize_input=True,
+ normalize_input=True,
+ requires_grad=False,
+ use_fid_inception=True):
+ """Build pretrained InceptionV3.
+
+ Args:
+ output_blocks (list[int]): Indices of blocks to return features of.
+ Possible values are:
+ - 0: corresponds to output of first max pooling
+ - 1: corresponds to output of second max pooling
+ - 2: corresponds to output which is fed to aux classifier
+ - 3: corresponds to output of final average pooling
+ resize_input (bool): If true, bilinearly resizes input to width and
+ height 299 before feeding input to model. As the network
+ without fully connected layers is fully convolutional, it
+ should be able to handle inputs of arbitrary size, so resizing
+ might not be strictly needed. Default: True.
+ normalize_input (bool): If true, scales the input from range (0, 1)
+ to the range the pretrained Inception network expects,
+ namely (-1, 1). Default: True.
+ requires_grad (bool): If true, parameters of the model require
+ gradients. Possibly useful for finetuning the network.
+ Default: False.
+ use_fid_inception (bool): If true, uses the pretrained Inception
+ model used in Tensorflow's FID implementation.
+ If false, uses the pretrained Inception model available in
+ torchvision. The FID Inception model has different weights
+ and a slightly different structure from torchvision's
+ Inception model. If you want to compute FID scores, you are
+ strongly advised to set this parameter to true to get
+ comparable results. Default: True.
+ """
+ super(InceptionV3, self).__init__()
+
+ self.resize_input = resize_input
+ self.normalize_input = normalize_input
+ self.output_blocks = sorted(output_blocks)
+ self.last_needed_block = max(output_blocks)
+
+ assert self.last_needed_block <= 3, ('Last possible output block index is 3')
+
+ self.blocks = nn.ModuleList()
+
+ if use_fid_inception:
+ inception = fid_inception_v3()
+ else:
+ try:
+ inception = models.inception_v3(pretrained=True, init_weights=False)
+ except TypeError:
+ # pytorch < 1.5 does not have init_weights for inception_v3
+ inception = models.inception_v3(pretrained=True)
+
+ # Block 0: input to maxpool1
+ block0 = [
+ inception.Conv2d_1a_3x3, inception.Conv2d_2a_3x3, inception.Conv2d_2b_3x3,
+ nn.MaxPool2d(kernel_size=3, stride=2)
+ ]
+ self.blocks.append(nn.Sequential(*block0))
+
+ # Block 1: maxpool1 to maxpool2
+ if self.last_needed_block >= 1:
+ block1 = [inception.Conv2d_3b_1x1, inception.Conv2d_4a_3x3, nn.MaxPool2d(kernel_size=3, stride=2)]
+ self.blocks.append(nn.Sequential(*block1))
+
+ # Block 2: maxpool2 to aux classifier
+ if self.last_needed_block >= 2:
+ block2 = [
+ inception.Mixed_5b,
+ inception.Mixed_5c,
+ inception.Mixed_5d,
+ inception.Mixed_6a,
+ inception.Mixed_6b,
+ inception.Mixed_6c,
+ inception.Mixed_6d,
+ inception.Mixed_6e,
+ ]
+ self.blocks.append(nn.Sequential(*block2))
+
+ # Block 3: aux classifier to final avgpool
+ if self.last_needed_block >= 3:
+ block3 = [
+ inception.Mixed_7a, inception.Mixed_7b, inception.Mixed_7c,
+ nn.AdaptiveAvgPool2d(output_size=(1, 1))
+ ]
+ self.blocks.append(nn.Sequential(*block3))
+
+ for param in self.parameters():
+ param.requires_grad = requires_grad
+
+ def forward(self, x):
+ """Get Inception feature maps.
+
+ Args:
+ x (Tensor): Input tensor of shape (b, 3, h, w).
+ Values are expected to be in range (-1, 1). You can also input
+ (0, 1) with setting normalize_input = True.
+
+ Returns:
+ list[Tensor]: Corresponding to the selected output block, sorted
+ ascending by index.
+ """
+ output = []
+
+ if self.resize_input:
+ x = F.interpolate(x, size=(299, 299), mode='bilinear', align_corners=False)
+
+ if self.normalize_input:
+ x = 2 * x - 1 # Scale from range (0, 1) to range (-1, 1)
+
+ for idx, block in enumerate(self.blocks):
+ x = block(x)
+ if idx in self.output_blocks:
+ output.append(x)
+
+ if idx == self.last_needed_block:
+ break
+
+ return output
+
+
+def fid_inception_v3():
+ """Build pretrained Inception model for FID computation.
+
+ The Inception model for FID computation uses a different set of weights
+ and has a slightly different structure than torchvision's Inception.
+
+ This method first constructs torchvision's Inception and then patches the
+ necessary parts that are different in the FID Inception model.
+ """
+ try:
+ inception = models.inception_v3(num_classes=1008, aux_logits=False, pretrained=False, init_weights=False)
+ except TypeError:
+ # pytorch < 1.5 does not have init_weights for inception_v3
+ inception = models.inception_v3(num_classes=1008, aux_logits=False, pretrained=False)
+
+ inception.Mixed_5b = FIDInceptionA(192, pool_features=32)
+ inception.Mixed_5c = FIDInceptionA(256, pool_features=64)
+ inception.Mixed_5d = FIDInceptionA(288, pool_features=64)
+ inception.Mixed_6b = FIDInceptionC(768, channels_7x7=128)
+ inception.Mixed_6c = FIDInceptionC(768, channels_7x7=160)
+ inception.Mixed_6d = FIDInceptionC(768, channels_7x7=160)
+ inception.Mixed_6e = FIDInceptionC(768, channels_7x7=192)
+ inception.Mixed_7b = FIDInceptionE_1(1280)
+ inception.Mixed_7c = FIDInceptionE_2(2048)
+
+ if os.path.exists(LOCAL_FID_WEIGHTS):
+ state_dict = torch.load(LOCAL_FID_WEIGHTS, map_location=lambda storage, loc: storage)
+ else:
+ state_dict = load_url(FID_WEIGHTS_URL, progress=True)
+
+ inception.load_state_dict(state_dict)
+ return inception
+
+
+class FIDInceptionA(models.inception.InceptionA):
+ """InceptionA block patched for FID computation"""
+
+ def __init__(self, in_channels, pool_features):
+ super(FIDInceptionA, self).__init__(in_channels, pool_features)
+
+ def forward(self, x):
+ branch1x1 = self.branch1x1(x)
+
+ branch5x5 = self.branch5x5_1(x)
+ branch5x5 = self.branch5x5_2(branch5x5)
+
+ branch3x3dbl = self.branch3x3dbl_1(x)
+ branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
+ branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
+
+ # Patch: Tensorflow's average pool does not use the padded zero's in
+ # its average calculation
+ branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, count_include_pad=False)
+ branch_pool = self.branch_pool(branch_pool)
+
+ outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool]
+ return torch.cat(outputs, 1)
+
+
+class FIDInceptionC(models.inception.InceptionC):
+ """InceptionC block patched for FID computation"""
+
+ def __init__(self, in_channels, channels_7x7):
+ super(FIDInceptionC, self).__init__(in_channels, channels_7x7)
+
+ def forward(self, x):
+ branch1x1 = self.branch1x1(x)
+
+ branch7x7 = self.branch7x7_1(x)
+ branch7x7 = self.branch7x7_2(branch7x7)
+ branch7x7 = self.branch7x7_3(branch7x7)
+
+ branch7x7dbl = self.branch7x7dbl_1(x)
+ branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
+ branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
+ branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
+ branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)
+
+ # Patch: Tensorflow's average pool does not use the padded zero's in
+ # its average calculation
+ branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, count_include_pad=False)
+ branch_pool = self.branch_pool(branch_pool)
+
+ outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]
+ return torch.cat(outputs, 1)
+
+
+class FIDInceptionE_1(models.inception.InceptionE):
+ """First InceptionE block patched for FID computation"""
+
+ def __init__(self, in_channels):
+ super(FIDInceptionE_1, self).__init__(in_channels)
+
+ def forward(self, x):
+ branch1x1 = self.branch1x1(x)
+
+ branch3x3 = self.branch3x3_1(x)
+ branch3x3 = [
+ self.branch3x3_2a(branch3x3),
+ self.branch3x3_2b(branch3x3),
+ ]
+ branch3x3 = torch.cat(branch3x3, 1)
+
+ branch3x3dbl = self.branch3x3dbl_1(x)
+ branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
+ branch3x3dbl = [
+ self.branch3x3dbl_3a(branch3x3dbl),
+ self.branch3x3dbl_3b(branch3x3dbl),
+ ]
+ branch3x3dbl = torch.cat(branch3x3dbl, 1)
+
+ # Patch: Tensorflow's average pool does not use the padded zero's in
+ # its average calculation
+ branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, count_include_pad=False)
+ branch_pool = self.branch_pool(branch_pool)
+
+ outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
+ return torch.cat(outputs, 1)
+
+
+class FIDInceptionE_2(models.inception.InceptionE):
+ """Second InceptionE block patched for FID computation"""
+
+ def __init__(self, in_channels):
+ super(FIDInceptionE_2, self).__init__(in_channels)
+
+ def forward(self, x):
+ branch1x1 = self.branch1x1(x)
+
+ branch3x3 = self.branch3x3_1(x)
+ branch3x3 = [
+ self.branch3x3_2a(branch3x3),
+ self.branch3x3_2b(branch3x3),
+ ]
+ branch3x3 = torch.cat(branch3x3, 1)
+
+ branch3x3dbl = self.branch3x3dbl_1(x)
+ branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
+ branch3x3dbl = [
+ self.branch3x3dbl_3a(branch3x3dbl),
+ self.branch3x3dbl_3b(branch3x3dbl),
+ ]
+ branch3x3dbl = torch.cat(branch3x3dbl, 1)
+
+ # Patch: The FID Inception model uses max pooling instead of average
+ # pooling. This is likely an error in this specific Inception
+ # implementation, as other Inception models use average pooling here
+ # (which matches the description in the paper).
+ branch_pool = F.max_pool2d(x, kernel_size=3, stride=1, padding=1)
+ branch_pool = self.branch_pool(branch_pool)
+
+ outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
+ return torch.cat(outputs, 1)