From e6bd5af6a8e306a1cdef63402a77a980a04ad6e1 Mon Sep 17 00:00:00 2001 From: Grafting Rayman <156515434+GraftingRayman@users.noreply.github.com> Date: Fri, 17 Jan 2025 11:06:44 +0000 Subject: Add files via upload --- r_facelib/parsing/bisenet.py | 140 +++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 140 insertions(+) create mode 100644 r_facelib/parsing/bisenet.py (limited to 'r_facelib/parsing/bisenet.py') diff --git a/r_facelib/parsing/bisenet.py b/r_facelib/parsing/bisenet.py new file mode 100644 index 0000000..9e7a084 --- /dev/null +++ b/r_facelib/parsing/bisenet.py @@ -0,0 +1,140 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F + +from .resnet import ResNet18 + + +class ConvBNReLU(nn.Module): + + def __init__(self, in_chan, out_chan, ks=3, stride=1, padding=1): + super(ConvBNReLU, self).__init__() + self.conv = nn.Conv2d(in_chan, out_chan, kernel_size=ks, stride=stride, padding=padding, bias=False) + self.bn = nn.BatchNorm2d(out_chan) + + def forward(self, x): + x = self.conv(x) + x = F.relu(self.bn(x)) + return x + + +class BiSeNetOutput(nn.Module): + + def __init__(self, in_chan, mid_chan, num_class): + super(BiSeNetOutput, self).__init__() + self.conv = ConvBNReLU(in_chan, mid_chan, ks=3, stride=1, padding=1) + self.conv_out = nn.Conv2d(mid_chan, num_class, kernel_size=1, bias=False) + + def forward(self, x): + feat = self.conv(x) + out = self.conv_out(feat) + return out, feat + + +class AttentionRefinementModule(nn.Module): + + def __init__(self, in_chan, out_chan): + super(AttentionRefinementModule, self).__init__() + self.conv = ConvBNReLU(in_chan, out_chan, ks=3, stride=1, padding=1) + self.conv_atten = nn.Conv2d(out_chan, out_chan, kernel_size=1, bias=False) + self.bn_atten = nn.BatchNorm2d(out_chan) + self.sigmoid_atten = nn.Sigmoid() + + def forward(self, x): + feat = self.conv(x) + atten = F.avg_pool2d(feat, feat.size()[2:]) + atten = self.conv_atten(atten) + atten = self.bn_atten(atten) + atten = self.sigmoid_atten(atten) + out = torch.mul(feat, atten) + return out + + +class ContextPath(nn.Module): + + def __init__(self): + super(ContextPath, self).__init__() + self.resnet = ResNet18() + self.arm16 = AttentionRefinementModule(256, 128) + self.arm32 = AttentionRefinementModule(512, 128) + self.conv_head32 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1) + self.conv_head16 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1) + self.conv_avg = ConvBNReLU(512, 128, ks=1, stride=1, padding=0) + + def forward(self, x): + feat8, feat16, feat32 = self.resnet(x) + h8, w8 = feat8.size()[2:] + h16, w16 = feat16.size()[2:] + h32, w32 = feat32.size()[2:] + + avg = F.avg_pool2d(feat32, feat32.size()[2:]) + avg = self.conv_avg(avg) + avg_up = F.interpolate(avg, (h32, w32), mode='nearest') + + feat32_arm = self.arm32(feat32) + feat32_sum = feat32_arm + avg_up + feat32_up = F.interpolate(feat32_sum, (h16, w16), mode='nearest') + feat32_up = self.conv_head32(feat32_up) + + feat16_arm = self.arm16(feat16) + feat16_sum = feat16_arm + feat32_up + feat16_up = F.interpolate(feat16_sum, (h8, w8), mode='nearest') + feat16_up = self.conv_head16(feat16_up) + + return feat8, feat16_up, feat32_up # x8, x8, x16 + + +class FeatureFusionModule(nn.Module): + + def __init__(self, in_chan, out_chan): + super(FeatureFusionModule, self).__init__() + self.convblk = ConvBNReLU(in_chan, out_chan, ks=1, stride=1, padding=0) + self.conv1 = nn.Conv2d(out_chan, out_chan // 4, kernel_size=1, stride=1, padding=0, bias=False) + self.conv2 = nn.Conv2d(out_chan // 4, out_chan, kernel_size=1, stride=1, padding=0, bias=False) + self.relu = nn.ReLU(inplace=True) + self.sigmoid = nn.Sigmoid() + + def forward(self, fsp, fcp): + fcat = torch.cat([fsp, fcp], dim=1) + feat = self.convblk(fcat) + atten = F.avg_pool2d(feat, feat.size()[2:]) + atten = self.conv1(atten) + atten = self.relu(atten) + atten = self.conv2(atten) + atten = self.sigmoid(atten) + feat_atten = torch.mul(feat, atten) + feat_out = feat_atten + feat + return feat_out + + +class BiSeNet(nn.Module): + + def __init__(self, num_class): + super(BiSeNet, self).__init__() + self.cp = ContextPath() + self.ffm = FeatureFusionModule(256, 256) + self.conv_out = BiSeNetOutput(256, 256, num_class) + self.conv_out16 = BiSeNetOutput(128, 64, num_class) + self.conv_out32 = BiSeNetOutput(128, 64, num_class) + + def forward(self, x, return_feat=False): + h, w = x.size()[2:] + feat_res8, feat_cp8, feat_cp16 = self.cp(x) # return res3b1 feature + feat_sp = feat_res8 # replace spatial path feature with res3b1 feature + feat_fuse = self.ffm(feat_sp, feat_cp8) + + out, feat = self.conv_out(feat_fuse) + out16, feat16 = self.conv_out16(feat_cp8) + out32, feat32 = self.conv_out32(feat_cp16) + + out = F.interpolate(out, (h, w), mode='bilinear', align_corners=True) + out16 = F.interpolate(out16, (h, w), mode='bilinear', align_corners=True) + out32 = F.interpolate(out32, (h, w), mode='bilinear', align_corners=True) + + if return_feat: + feat = F.interpolate(feat, (h, w), mode='bilinear', align_corners=True) + feat16 = F.interpolate(feat16, (h, w), mode='bilinear', align_corners=True) + feat32 = F.interpolate(feat32, (h, w), mode='bilinear', align_corners=True) + return out, out16, out32, feat, feat16, feat32 + else: + return out, out16, out32 -- cgit v1.2.3