From e6bd5af6a8e306a1cdef63402a77a980a04ad6e1 Mon Sep 17 00:00:00 2001 From: Grafting Rayman <156515434+GraftingRayman@users.noreply.github.com> Date: Fri, 17 Jan 2025 11:06:44 +0000 Subject: Add files via upload --- .../detection/yolov5face/models/experimental.py | 45 ++++++++++++++++++++++ 1 file changed, 45 insertions(+) create mode 100644 r_facelib/detection/yolov5face/models/experimental.py (limited to 'r_facelib/detection/yolov5face/models/experimental.py') diff --git a/r_facelib/detection/yolov5face/models/experimental.py b/r_facelib/detection/yolov5face/models/experimental.py new file mode 100644 index 0000000..bdf7aea --- /dev/null +++ b/r_facelib/detection/yolov5face/models/experimental.py @@ -0,0 +1,45 @@ +# # This file contains experimental modules + +import numpy as np +import torch +from torch import nn + +from r_facelib.detection.yolov5face.models.common import Conv + + +class CrossConv(nn.Module): + # Cross Convolution Downsample + def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False): + # ch_in, ch_out, kernel, stride, groups, expansion, shortcut + super().__init__() + c_ = int(c2 * e) # hidden channels + self.cv1 = Conv(c1, c_, (1, k), (1, s)) + self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g) + self.add = shortcut and c1 == c2 + + def forward(self, x): + return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) + + +class MixConv2d(nn.Module): + # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595 + def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): + super().__init__() + groups = len(k) + if equal_ch: # equal c_ per group + i = torch.linspace(0, groups - 1e-6, c2).floor() # c2 indices + c_ = [(i == g).sum() for g in range(groups)] # intermediate channels + else: # equal weight.numel() per group + b = [c2] + [0] * groups + a = np.eye(groups + 1, groups, k=-1) + a -= np.roll(a, 1, axis=1) + a *= np.array(k) ** 2 + a[0] = 1 + c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b + + self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)]) + self.bn = nn.BatchNorm2d(c2) + self.act = nn.LeakyReLU(0.1, inplace=True) + + def forward(self, x): + return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1))) -- cgit v1.2.3