From e6bd5af6a8e306a1cdef63402a77a980a04ad6e1 Mon Sep 17 00:00:00 2001 From: Grafting Rayman <156515434+GraftingRayman@users.noreply.github.com> Date: Fri, 17 Jan 2025 11:06:44 +0000 Subject: Add files via upload --- r_facelib/detection/__init__.py | 102 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 102 insertions(+) create mode 100644 r_facelib/detection/__init__.py (limited to 'r_facelib/detection/__init__.py') diff --git a/r_facelib/detection/__init__.py b/r_facelib/detection/__init__.py new file mode 100644 index 0000000..3c953bd --- /dev/null +++ b/r_facelib/detection/__init__.py @@ -0,0 +1,102 @@ +import os +import torch +from torch import nn +from copy import deepcopy +import pathlib + +from r_facelib.utils import load_file_from_url +from r_facelib.utils import download_pretrained_models +from r_facelib.detection.yolov5face.models.common import Conv + +from .retinaface.retinaface import RetinaFace +from .yolov5face.face_detector import YoloDetector + + +def init_detection_model(model_name, half=False, device='cuda'): + if 'retinaface' in model_name: + model = init_retinaface_model(model_name, half, device) + elif 'YOLOv5' in model_name: + model = init_yolov5face_model(model_name, device) + else: + raise NotImplementedError(f'{model_name} is not implemented.') + + return model + + +def init_retinaface_model(model_name, half=False, device='cuda'): + if model_name == 'retinaface_resnet50': + model = RetinaFace(network_name='resnet50', half=half) + model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth' + elif model_name == 'retinaface_mobile0.25': + model = RetinaFace(network_name='mobile0.25', half=half) + model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_mobilenet0.25_Final.pth' + else: + raise NotImplementedError(f'{model_name} is not implemented.') + + model_path = load_file_from_url(url=model_url, model_dir='../../models/facedetection', progress=True, file_name=None) + load_net = torch.load(model_path, map_location=lambda storage, loc: storage) + # remove unnecessary 'module.' + for k, v in deepcopy(load_net).items(): + if k.startswith('module.'): + load_net[k[7:]] = v + load_net.pop(k) + model.load_state_dict(load_net, strict=True) + model.eval() + model = model.to(device) + + return model + + +def init_yolov5face_model(model_name, device='cuda'): + current_dir = str(pathlib.Path(__file__).parent.resolve()) + if model_name == 'YOLOv5l': + model = YoloDetector(config_name=current_dir+'/yolov5face/models/yolov5l.yaml', device=device) + model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/yolov5l-face.pth' + elif model_name == 'YOLOv5n': + model = YoloDetector(config_name=current_dir+'/yolov5face/models/yolov5n.yaml', device=device) + model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/yolov5n-face.pth' + else: + raise NotImplementedError(f'{model_name} is not implemented.') + + model_path = load_file_from_url(url=model_url, model_dir='../../models/facedetection', progress=True, file_name=None) + load_net = torch.load(model_path, map_location=lambda storage, loc: storage) + model.detector.load_state_dict(load_net, strict=True) + model.detector.eval() + model.detector = model.detector.to(device).float() + + for m in model.detector.modules(): + if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]: + m.inplace = True # pytorch 1.7.0 compatibility + elif isinstance(m, Conv): + m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility + + return model + + +# Download from Google Drive +# def init_yolov5face_model(model_name, device='cuda'): +# if model_name == 'YOLOv5l': +# model = YoloDetector(config_name='facelib/detection/yolov5face/models/yolov5l.yaml', device=device) +# f_id = {'yolov5l-face.pth': '131578zMA6B2x8VQHyHfa6GEPtulMCNzV'} +# elif model_name == 'YOLOv5n': +# model = YoloDetector(config_name='facelib/detection/yolov5face/models/yolov5n.yaml', device=device) +# f_id = {'yolov5n-face.pth': '1fhcpFvWZqghpGXjYPIne2sw1Fy4yhw6o'} +# else: +# raise NotImplementedError(f'{model_name} is not implemented.') + +# model_path = os.path.join('../../models/facedetection', list(f_id.keys())[0]) +# if not os.path.exists(model_path): +# download_pretrained_models(file_ids=f_id, save_path_root='../../models/facedetection') + +# load_net = torch.load(model_path, map_location=lambda storage, loc: storage) +# model.detector.load_state_dict(load_net, strict=True) +# model.detector.eval() +# model.detector = model.detector.to(device).float() + +# for m in model.detector.modules(): +# if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]: +# m.inplace = True # pytorch 1.7.0 compatibility +# elif isinstance(m, Conv): +# m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility + +# return model \ No newline at end of file -- cgit v1.2.3