From 495ffc4777522e40941753e3b1b79c02f84b25b4 Mon Sep 17 00:00:00 2001 From: Grafting Rayman <156515434+GraftingRayman@users.noreply.github.com> Date: Fri, 17 Jan 2025 11:00:30 +0000 Subject: Add files via upload --- r_basicsr/models/esrgan_model.py | 83 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 83 insertions(+) create mode 100644 r_basicsr/models/esrgan_model.py (limited to 'r_basicsr/models/esrgan_model.py') diff --git a/r_basicsr/models/esrgan_model.py b/r_basicsr/models/esrgan_model.py new file mode 100644 index 0000000..8924920 --- /dev/null +++ b/r_basicsr/models/esrgan_model.py @@ -0,0 +1,83 @@ +import torch +from collections import OrderedDict + +from r_basicsr.utils.registry import MODEL_REGISTRY +from .srgan_model import SRGANModel + + +@MODEL_REGISTRY.register() +class ESRGANModel(SRGANModel): + """ESRGAN model for single image super-resolution.""" + + def optimize_parameters(self, current_iter): + # optimize net_g + for p in self.net_d.parameters(): + p.requires_grad = False + + self.optimizer_g.zero_grad() + self.output = self.net_g(self.lq) + + l_g_total = 0 + loss_dict = OrderedDict() + if (current_iter % self.net_d_iters == 0 and current_iter > self.net_d_init_iters): + # pixel loss + if self.cri_pix: + l_g_pix = self.cri_pix(self.output, self.gt) + l_g_total += l_g_pix + loss_dict['l_g_pix'] = l_g_pix + # perceptual loss + if self.cri_perceptual: + l_g_percep, l_g_style = self.cri_perceptual(self.output, self.gt) + if l_g_percep is not None: + l_g_total += l_g_percep + loss_dict['l_g_percep'] = l_g_percep + if l_g_style is not None: + l_g_total += l_g_style + loss_dict['l_g_style'] = l_g_style + # gan loss (relativistic gan) + real_d_pred = self.net_d(self.gt).detach() + fake_g_pred = self.net_d(self.output) + l_g_real = self.cri_gan(real_d_pred - torch.mean(fake_g_pred), False, is_disc=False) + l_g_fake = self.cri_gan(fake_g_pred - torch.mean(real_d_pred), True, is_disc=False) + l_g_gan = (l_g_real + l_g_fake) / 2 + + l_g_total += l_g_gan + loss_dict['l_g_gan'] = l_g_gan + + l_g_total.backward() + self.optimizer_g.step() + + # optimize net_d + for p in self.net_d.parameters(): + p.requires_grad = True + + self.optimizer_d.zero_grad() + # gan loss (relativistic gan) + + # In order to avoid the error in distributed training: + # "Error detected in CudnnBatchNormBackward: RuntimeError: one of + # the variables needed for gradient computation has been modified by + # an inplace operation", + # we separate the backwards for real and fake, and also detach the + # tensor for calculating mean. + + # real + fake_d_pred = self.net_d(self.output).detach() + real_d_pred = self.net_d(self.gt) + l_d_real = self.cri_gan(real_d_pred - torch.mean(fake_d_pred), True, is_disc=True) * 0.5 + l_d_real.backward() + # fake + fake_d_pred = self.net_d(self.output.detach()) + l_d_fake = self.cri_gan(fake_d_pred - torch.mean(real_d_pred.detach()), False, is_disc=True) * 0.5 + l_d_fake.backward() + self.optimizer_d.step() + + loss_dict['l_d_real'] = l_d_real + loss_dict['l_d_fake'] = l_d_fake + loss_dict['out_d_real'] = torch.mean(real_d_pred.detach()) + loss_dict['out_d_fake'] = torch.mean(fake_d_pred.detach()) + + self.log_dict = self.reduce_loss_dict(loss_dict) + + if self.ema_decay > 0: + self.model_ema(decay=self.ema_decay) -- cgit v1.2.3