From 495ffc4777522e40941753e3b1b79c02f84b25b4 Mon Sep 17 00:00:00 2001 From: Grafting Rayman <156515434+GraftingRayman@users.noreply.github.com> Date: Fri, 17 Jan 2025 11:00:30 +0000 Subject: Add files via upload --- r_basicsr/archs/srresnet_arch.py | 65 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 65 insertions(+) create mode 100644 r_basicsr/archs/srresnet_arch.py (limited to 'r_basicsr/archs/srresnet_arch.py') diff --git a/r_basicsr/archs/srresnet_arch.py b/r_basicsr/archs/srresnet_arch.py new file mode 100644 index 0000000..99b56a4 --- /dev/null +++ b/r_basicsr/archs/srresnet_arch.py @@ -0,0 +1,65 @@ +from torch import nn as nn +from torch.nn import functional as F + +from r_basicsr.utils.registry import ARCH_REGISTRY +from .arch_util import ResidualBlockNoBN, default_init_weights, make_layer + + +@ARCH_REGISTRY.register() +class MSRResNet(nn.Module): + """Modified SRResNet. + + A compacted version modified from SRResNet in + "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network" + It uses residual blocks without BN, similar to EDSR. + Currently, it supports x2, x3 and x4 upsampling scale factor. + + Args: + num_in_ch (int): Channel number of inputs. Default: 3. + num_out_ch (int): Channel number of outputs. Default: 3. + num_feat (int): Channel number of intermediate features. Default: 64. + num_block (int): Block number in the body network. Default: 16. + upscale (int): Upsampling factor. Support x2, x3 and x4. Default: 4. + """ + + def __init__(self, num_in_ch=3, num_out_ch=3, num_feat=64, num_block=16, upscale=4): + super(MSRResNet, self).__init__() + self.upscale = upscale + + self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1) + self.body = make_layer(ResidualBlockNoBN, num_block, num_feat=num_feat) + + # upsampling + if self.upscale in [2, 3]: + self.upconv1 = nn.Conv2d(num_feat, num_feat * self.upscale * self.upscale, 3, 1, 1) + self.pixel_shuffle = nn.PixelShuffle(self.upscale) + elif self.upscale == 4: + self.upconv1 = nn.Conv2d(num_feat, num_feat * 4, 3, 1, 1) + self.upconv2 = nn.Conv2d(num_feat, num_feat * 4, 3, 1, 1) + self.pixel_shuffle = nn.PixelShuffle(2) + + self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1) + self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) + + # activation function + self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True) + + # initialization + default_init_weights([self.conv_first, self.upconv1, self.conv_hr, self.conv_last], 0.1) + if self.upscale == 4: + default_init_weights(self.upconv2, 0.1) + + def forward(self, x): + feat = self.lrelu(self.conv_first(x)) + out = self.body(feat) + + if self.upscale == 4: + out = self.lrelu(self.pixel_shuffle(self.upconv1(out))) + out = self.lrelu(self.pixel_shuffle(self.upconv2(out))) + elif self.upscale in [2, 3]: + out = self.lrelu(self.pixel_shuffle(self.upconv1(out))) + + out = self.conv_last(self.lrelu(self.conv_hr(out))) + base = F.interpolate(x, scale_factor=self.upscale, mode='bilinear', align_corners=False) + out += base + return out -- cgit v1.2.3