From 495ffc4777522e40941753e3b1b79c02f84b25b4 Mon Sep 17 00:00:00 2001 From: Grafting Rayman <156515434+GraftingRayman@users.noreply.github.com> Date: Fri, 17 Jan 2025 11:00:30 +0000 Subject: Add files via upload --- r_basicsr/archs/edsr_arch.py | 61 ++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 61 insertions(+) create mode 100644 r_basicsr/archs/edsr_arch.py (limited to 'r_basicsr/archs/edsr_arch.py') diff --git a/r_basicsr/archs/edsr_arch.py b/r_basicsr/archs/edsr_arch.py new file mode 100644 index 0000000..4990b2c --- /dev/null +++ b/r_basicsr/archs/edsr_arch.py @@ -0,0 +1,61 @@ +import torch +from torch import nn as nn + +from r_basicsr.archs.arch_util import ResidualBlockNoBN, Upsample, make_layer +from r_basicsr.utils.registry import ARCH_REGISTRY + + +@ARCH_REGISTRY.register() +class EDSR(nn.Module): + """EDSR network structure. + + Paper: Enhanced Deep Residual Networks for Single Image Super-Resolution. + Ref git repo: https://github.com/thstkdgus35/EDSR-PyTorch + + Args: + num_in_ch (int): Channel number of inputs. + num_out_ch (int): Channel number of outputs. + num_feat (int): Channel number of intermediate features. + Default: 64. + num_block (int): Block number in the trunk network. Default: 16. + upscale (int): Upsampling factor. Support 2^n and 3. + Default: 4. + res_scale (float): Used to scale the residual in residual block. + Default: 1. + img_range (float): Image range. Default: 255. + rgb_mean (tuple[float]): Image mean in RGB orders. + Default: (0.4488, 0.4371, 0.4040), calculated from DIV2K dataset. + """ + + def __init__(self, + num_in_ch, + num_out_ch, + num_feat=64, + num_block=16, + upscale=4, + res_scale=1, + img_range=255., + rgb_mean=(0.4488, 0.4371, 0.4040)): + super(EDSR, self).__init__() + + self.img_range = img_range + self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1) + + self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1) + self.body = make_layer(ResidualBlockNoBN, num_block, num_feat=num_feat, res_scale=res_scale, pytorch_init=True) + self.conv_after_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1) + self.upsample = Upsample(upscale, num_feat) + self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) + + def forward(self, x): + self.mean = self.mean.type_as(x) + + x = (x - self.mean) * self.img_range + x = self.conv_first(x) + res = self.conv_after_body(self.body(x)) + res += x + + x = self.conv_last(self.upsample(res)) + x = x / self.img_range + self.mean + + return x -- cgit v1.2.3