From 495ffc4777522e40941753e3b1b79c02f84b25b4 Mon Sep 17 00:00:00 2001 From: Grafting Rayman <156515434+GraftingRayman@users.noreply.github.com> Date: Fri, 17 Jan 2025 11:00:30 +0000 Subject: Add files via upload --- r_basicsr/archs/dfdnet_util.py | 162 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 162 insertions(+) create mode 100644 r_basicsr/archs/dfdnet_util.py (limited to 'r_basicsr/archs/dfdnet_util.py') diff --git a/r_basicsr/archs/dfdnet_util.py b/r_basicsr/archs/dfdnet_util.py new file mode 100644 index 0000000..411e683 --- /dev/null +++ b/r_basicsr/archs/dfdnet_util.py @@ -0,0 +1,162 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch.autograd import Function +from torch.nn.utils.spectral_norm import spectral_norm + + +class BlurFunctionBackward(Function): + + @staticmethod + def forward(ctx, grad_output, kernel, kernel_flip): + ctx.save_for_backward(kernel, kernel_flip) + grad_input = F.conv2d(grad_output, kernel_flip, padding=1, groups=grad_output.shape[1]) + return grad_input + + @staticmethod + def backward(ctx, gradgrad_output): + kernel, _ = ctx.saved_tensors + grad_input = F.conv2d(gradgrad_output, kernel, padding=1, groups=gradgrad_output.shape[1]) + return grad_input, None, None + + +class BlurFunction(Function): + + @staticmethod + def forward(ctx, x, kernel, kernel_flip): + ctx.save_for_backward(kernel, kernel_flip) + output = F.conv2d(x, kernel, padding=1, groups=x.shape[1]) + return output + + @staticmethod + def backward(ctx, grad_output): + kernel, kernel_flip = ctx.saved_tensors + grad_input = BlurFunctionBackward.apply(grad_output, kernel, kernel_flip) + return grad_input, None, None + + +blur = BlurFunction.apply + + +class Blur(nn.Module): + + def __init__(self, channel): + super().__init__() + kernel = torch.tensor([[1, 2, 1], [2, 4, 2], [1, 2, 1]], dtype=torch.float32) + kernel = kernel.view(1, 1, 3, 3) + kernel = kernel / kernel.sum() + kernel_flip = torch.flip(kernel, [2, 3]) + + self.kernel = kernel.repeat(channel, 1, 1, 1) + self.kernel_flip = kernel_flip.repeat(channel, 1, 1, 1) + + def forward(self, x): + return blur(x, self.kernel.type_as(x), self.kernel_flip.type_as(x)) + + +def calc_mean_std(feat, eps=1e-5): + """Calculate mean and std for adaptive_instance_normalization. + + Args: + feat (Tensor): 4D tensor. + eps (float): A small value added to the variance to avoid + divide-by-zero. Default: 1e-5. + """ + size = feat.size() + assert len(size) == 4, 'The input feature should be 4D tensor.' + n, c = size[:2] + feat_var = feat.view(n, c, -1).var(dim=2) + eps + feat_std = feat_var.sqrt().view(n, c, 1, 1) + feat_mean = feat.view(n, c, -1).mean(dim=2).view(n, c, 1, 1) + return feat_mean, feat_std + + +def adaptive_instance_normalization(content_feat, style_feat): + """Adaptive instance normalization. + + Adjust the reference features to have the similar color and illuminations + as those in the degradate features. + + Args: + content_feat (Tensor): The reference feature. + style_feat (Tensor): The degradate features. + """ + size = content_feat.size() + style_mean, style_std = calc_mean_std(style_feat) + content_mean, content_std = calc_mean_std(content_feat) + normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size) + return normalized_feat * style_std.expand(size) + style_mean.expand(size) + + +def AttentionBlock(in_channel): + return nn.Sequential( + spectral_norm(nn.Conv2d(in_channel, in_channel, 3, 1, 1)), nn.LeakyReLU(0.2, True), + spectral_norm(nn.Conv2d(in_channel, in_channel, 3, 1, 1))) + + +def conv_block(in_channels, out_channels, kernel_size=3, stride=1, dilation=1, bias=True): + """Conv block used in MSDilationBlock.""" + + return nn.Sequential( + spectral_norm( + nn.Conv2d( + in_channels, + out_channels, + kernel_size=kernel_size, + stride=stride, + dilation=dilation, + padding=((kernel_size - 1) // 2) * dilation, + bias=bias)), + nn.LeakyReLU(0.2), + spectral_norm( + nn.Conv2d( + out_channels, + out_channels, + kernel_size=kernel_size, + stride=stride, + dilation=dilation, + padding=((kernel_size - 1) // 2) * dilation, + bias=bias)), + ) + + +class MSDilationBlock(nn.Module): + """Multi-scale dilation block.""" + + def __init__(self, in_channels, kernel_size=3, dilation=(1, 1, 1, 1), bias=True): + super(MSDilationBlock, self).__init__() + + self.conv_blocks = nn.ModuleList() + for i in range(4): + self.conv_blocks.append(conv_block(in_channels, in_channels, kernel_size, dilation=dilation[i], bias=bias)) + self.conv_fusion = spectral_norm( + nn.Conv2d( + in_channels * 4, + in_channels, + kernel_size=kernel_size, + stride=1, + padding=(kernel_size - 1) // 2, + bias=bias)) + + def forward(self, x): + out = [] + for i in range(4): + out.append(self.conv_blocks[i](x)) + out = torch.cat(out, 1) + out = self.conv_fusion(out) + x + return out + + +class UpResBlock(nn.Module): + + def __init__(self, in_channel): + super(UpResBlock, self).__init__() + self.body = nn.Sequential( + nn.Conv2d(in_channel, in_channel, 3, 1, 1), + nn.LeakyReLU(0.2, True), + nn.Conv2d(in_channel, in_channel, 3, 1, 1), + ) + + def forward(self, x): + out = x + self.body(x) + return out -- cgit v1.2.3